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CHAPTER 1

INTRODUCTION

This report presents the work done and the results
obtained during the year February 1964 - January 1965.
Certain parts of the material contained in this report have
been presented in the three quarterly reports submitted
previously. Repetition of this material was deemed desir-
able, however, in the interest of making this report a
presentation of the totality of the work done on the research
contract up to the present time, complete in and of itself,
with no necessity for referring to the previous quarterly
reports.

Each chapter is intended to be a complete presentation
of its own material, with no cross-referencing among the
individual chapters. In the interest of clarity and contin-
uity of presentation, however, soﬁe duplication of material
will be noted in various chapters, notably in chapters 3 and
4, in both of which is presented explanations of some of the
classical methods for the solution of the optimal control

problem.



Chapter 2 contains the development of a imathematical
model for a space vehicle. A computer program suitable for
use in simulation of the space vehicle on a digital computer
is explained, and examples of the use of the program are
given.
timal control theory is civen in chapter
3. Some of the "classical" techniques for the solution of
the optimal control problem are given, and their limitztions
are pointed out. The Specific Optimal Control approach to
the optimal control solution is then presented, and several
methods are given for finding the svecific optimal solutions.
1t is felt that this approach to the solution of the attitude
control problem may prove to be quite fruitful.

The optimal control problem in which the control input
is bounded is examined in chapter 4. shortcomings of the
classical methods for solution of this problem are pointed
out, and some methods of solution which overcome some of
these difficulties are explained. Examples of the use of
these methods are provided and comparisons of-the methods
are given,

Chapter 5 is concerned with sequential estimation of
states and parameters in non-linear systems. A ﬁechnique

is developed with which sequential, least-sguare estimates




s

¥

t

b4

of the states of a system may be obtained, based on noisy
measurements of possibly nonlinear combinations of the states
of the system. The use of these estimates for the purpose

of controlling the system is investigated. Experimental
results of the use of the techniques developed in this chap-
tgr are given,

In chapter 6, an edditional approach to the solution of
the specific optimal control problem is civen. This approach
makes use of a min-max criterion for the optimization. Such
a criterion reguires that the maximum deviation be mininized,
as opposed to a least-squares criterion, in which a sum of
the sguares of deviations is minimized. Examples are civen
which illustrate the use of this approach in a specific
optimal control problem.

Appendices G, H, 1, J, and K contain listings ¢f the
Fortran programs which were used to obtain the results given
in the various examples in this report. Explanations of
the functions of the programs are given in each appendix.

These appendices are in volume II.
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CHAPTER 2
MATHEMATICAL MODEL AND DIGITAL COMPUTER

SIMULATION OF SPACE VEHICLES

2.1 Summary

The differential equations describing the motion of an
arbitrary space vehicle about its center of mass are deter-
mined and arranged in a form suitable for digital computer
solutions. From these equations a computer program is devel-
oped which allows the simulatiop of a space vehicle and its
attitude control system on an IBM 7094 or similar machine.

A test of the program is shown in Figure 2.1 where one of the
computer model's angular velocities is compared with tele-
metered values from Ranger VII's initial sun acquisition.

This computer model is now being used to investigate

the feasibility of new control schemes.

2.2 Equations of Motion

A mathematical model for a spacecraft is determined by
representing the vehicle as an invariant inertia tensor
written about a set of mutually perpendicular axes through

the center of mass. Any translational motion of the center
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of mass is not considered because it would not affect the
attitude control problenm.

One criticism which might be raised at this point is
that the moments of inertia are not constant throughout the
flight of a spacecraft, but vary because of antenna angle
changes and other factors. A time varying inertia tensor |
is not allowed, however, because it is not intended to simu-
late the entire attitude history of a vehicle with one com-
puter run. What is intended is the simulation of certain
portions of the flight, such as sun acquisition, where the

inertia tensor can be considered constant.

2.2.1 Coordinate Systems

An inertially fixed cartesian coordinate system through
the center of mass is assumed and represented by upper case
letters X, Y and Z. In normal usage the Z axis is considered
to point towards the sun. The vehicle control axes, called
the body axes, are next represented in this inertial system
and denoted by the lower case letters x, y, and z. See below

and Figure 2.2.



SPACECRAFT
SHOWING BODY AXES

Figure 2.2
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2.2.2 Description of the Angular Velocities of The Vehicle
Following the development in Goldstein [1] the angular

momentum of a spacecraft is given by:

L = Iw (2.2.1)

where I is the inertia tensor written about the control axes:

— _—
1 I I
XX Xy Xz
I = I I ) §
xy YY Yz
1 I I
| “xz vz 2z _

w is the angular velocity vector with components w, u&. and

w, about the three body axes.




The basic equation of motion is then:

— =N where: (2.2.2)

is the applied torque.

|
]
2

N
|2 ]
It is understood here that the derivative is taken with
respect to an inertially fixed system. Since the body system
is rotating in inertial space, this derivative can be ex-

pressed as:

dL dL
dt inertial at body
C (I w) =N-wXIuw (2.2.4)
at | = = = =
body
Assuming an invariant inertia tensor
lw=N-w*XIw (2.2.5)

—

Solving this linear algebraic system for_é
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(Nx - wyLz + szy) Ixy Ixz
Det (Ny - szx + u&Lz) Iyy Iyz
(Nz - way + wny) Izy Izz
. — —# (202.6)
&, =
Det [1]
r _ —
Ixx (Nx “&Lz + u&Ly) Ixz
Det Iyx (NY - “ELx + a&Lz) Iyz
I« (Nz - “&LY + “&Lx) Izz
. - - (2.2.7)
w = :
Y Det [I]
- _
I I (N « wL + wL)
XX Xy x Yy 2 zy
Det I I (N -« wl + wlL)
yx Yy Y Z X X 2z
Lsz Izy (Nz - w&Ly + u&Lx)
o, = (2.2.8)
Det [1]

2.2.3 Position Description by Euler Angles
'~ Once an inertial reference is established, the body
system rotation with respect to this reference may be de-

scribed by three Euler angles. Consider a roll-pitch-roll
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sequence as shown in FPigure 2.3.

The first rotation yields a transformation

X CO8 ¢ + y 8in ¢

-X 8in ¢ + y cos ¢

z

S

" cos ¢ sin¢ O

-g8in ¢ cos ¢ O

0 0 1

1 o

The second rotation yields a transformation:

s -

xﬂ

Y“

z“
e -

xll

x|

y' cos 8 + z' sin 6

-y' 8in 0 + 2' cos 8

Al

Aﬂ

0 cos 8 s8in 6

'L? -sin 6 cos §

The third rotation yields a transformation

x"l
y"'

zﬂ‘

X" cos ¥+ y" sin ¥

= =-x" 8in ¥ + y" cos V¥

1 o o ]

N . B ) - '




. 1 ¢ <
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D
Ist ROTATION |[¢
(ROLL)

4
3ra ROTATION
(ROLL)

Figure 2.3
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e

L

x“ [}

.

y" L]

z.l 1

Ail 1)

z.l

-

A‘l ]

cos ¥ sin V¥
= ~-sin ¥ cos ¥

0 0

e

The third rotation fixes the final position of the body axes

and hence the triple-prime coordinates may be identified as

the body system.

tem to the body system is then:

—
Yy

| Z

= ANI Al‘

Ai

L

The transformation from the inertial sys-

where:

is in the inertial system and

is in the body system

What must now be determined is the relationship between

the body rates and the rate of change of these Euler angles.

-

0

0

1

.
‘. 1 « . 1
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¥ can be represented as a vector, using the right hand
rule, along the z"' axis. This velocity then has components

along each of the body axes:

e = 0
Y =0
v, = v

In a similar fashion 6 is a vector along the x" axis

and hence in the body system:

L Z_] _—

6 cos V¥

[«o X}
|

-é sin V¥

D
"

Finally for ¢ :

®
‘; = A"' A" o
@
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6x = é sin ¥ sin 6
éy = ¢ cos ¥ sin 8
wz = ¢ cos 8

The sum of these rates must yield the body rates, w :

w = 6 cos ¥V + é sin ¥ sin 6
a& = -0 sin ¥ + é cos V¥ sin 9
u& = @ + é cos 6

Solving for the Euler angle rates:

. u& sin ¢ + uy cos V¥

o = sin B (2.2.9)

6 = w cos ¥ - w sin V¥ (2.2.10)
X Y

Vo= ow - © cos § (2.2.11)

2.3 Fomrmulation of the Equations for Digital Solution

Equations (2.2.6)-(2.2.11) are six simultaneous first
order nonlinear differential equations which describe com-
pletely the attitude of a space vehicle. Given a set of
initial velocities and the initial position, if the torque
N(t) is known these equationscan be integrated by either

an analog or digital computer to describe the motion as a
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function of time.

Because of the many multiplications and trigonometric
functions involved, it is essentially impossible to use an
analog computer alone for this operation. This problem is,
however, well within the acope'of a large digital machine,
such as an IBM 7094, when a numerical integration technique

such as "Runge-Kutta Integration" is used.

2.3.1 Singularities

Before rushing ahead and writing a program to accomplish
the solution of these equations, their nature should be in-
vestigated. It is noticed that the right hand sides of equa-
tions (2.2.9) and (2.2.11) possess singularities when the

Euler angle 8 attains the values:
8 = + nx : n=20,1, 2, ...

The temptation hexe is to rationalize in the following manner:
These singularities can be ignored because the computer
can easily work with numbers 10+3£1uagnitude and using float~-
ing-point numbers the chances of § attaining a value such
that 1/sin 6 is greater than 10"‘30 are almost nil. Also the
derivatives é and @'will probably not remain large for long

and the resulting accuracy loss will be small.



To evaluate this assumption the physical interpretation
of the singularities should be investigated. Consider a
spacecraft aligned with the.inertial system. The position
description in a roll-pitch-roll sequence of Euler angles
would be, of course, ¢ = 0, 8 = 0, and ¥ = 0. Now refer
to Figure 2.4 and observe the sequence which describes the
spacecraft after having made a y#w,turn of A& radians. The
Euler angles are ¢ = +'§ . 8 =+ &, and ¥ = -‘% .

Since the original position with 8 = 0 was at one of
the singularities, it can be seen that these singularities
cannot be "glossed over". The magnitude of the changes in
© and V¥ when going through a rate singularity can be large,

+ % in this example, and thus the position error accrued
by numerically integrating through a singularity will be
very large.

The technique used in the actual model is essentially
the one proposed by P. Eckman [21. Equations (2.2.9)-(2.2.11)
may be written in terms of a different Euler sequence. If
this new sequence is properly selected the rate singularities
of the new Euler angles will not occur at the same physical

position of the body axes with respect to the inertial frame.

Consider a roll, pitch, yaw sequence where ¢' = roll,
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' = pitch, and ¥' = yaw. The new rate equations are:
. (w cos §' - w sin V')
o' = —= X (2.3.1)
cos 6' e
9' = ua sin §¥' + w cos | (2.3.2) .
{' = uy - b' sin 6' (2.3.3)

The technigue used in the model is to integrate using
one sequence of Euler angles until a rate singularity is
approached. At this point the model switches Euler sequences
and continues on using the new set of Euler angles.

The only problem here is that in order to switch se-
quences the present position must be determined using the
new Euler sequence. The way in which this is accomplished

is to note that the matrix A in the relationship:

~ —~
b4 X
Yy = A Y

Lz LZ

is invariant regardless of which set of Euler angles param-
atrize it. Thus to change sequences A is computed in terms

of the present sequence of Euler angles and then the inverse

'
. .
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operation is performed; that is, the new angles are found

from the A matrix values.

2.3.2 Computer Program

The computer program which has béen completed is com-
pletely described in a forthcoming Jet Propulsion Laboratory
report from JPL Section 344. 1In brief the program is set up
to numerically integrate using Runge-Kutta and Adams-Moulton
techniques. The user of the program supplies the initial
Euler angles and angular velocities along with the vehicle's
inertia tensor. when these parameters and conditions are
known, the user must write a subprogram to simulate the con-
trol gystem to be used. Completing this, the subprogram and
data are fed to the computer along with the model program.

The computer will now produce a trajectory, printing
out the Euler angles and angular velocities at prescribed

intervals.

2.4 Control Subprograms

Two control subprograms have been developed for use
with the model program. The first is for simulation of sun
acquisitions using sun sensors and gyro rate feedback. The

second is for the simulation of one cruise phase of a flight
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using derived rate feedback and sun sensors.

2.4.1 Sun Sensor Model

The sun sensors (pitch and yaw) were modelled in the
following manner. It was assumed that the conventional
sun sensors wou.d be used with solar cells and shadow masks.
This type of system has an "on axis" characteristic as
shown below. This is for one pitch sensor when the sun is

in the y-z plane.

v(a), Output voltage

A l \ T q, Pitch angle
\ 0 \ (radians)

—] l.._. Linear

range
V = SATURATED VOLTAGE LEVEL

Now when the vehicle is positioned so that the sun is
no longer in the y-z plane the pitch output will be reduced
because the illuminated area of the cells decreases as the

cosine of the angle of offset from the x-y plane. This offset
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angle is angle B for the pitch sensor and angle § for the
yaw sensor. See Figure 2.5,

The resulting sun sensor models produce outputs of
v(a) cos 3 for pitch and v(y) cos 8 for yaw. In the actual
program the saturated voltage output and linear range are

treated as input data.

2.4.2 Subprogram for Attitude Control During Sun Acquisition
This subprogram operates in the following manner. The
numerical integration in the main program must have available
the torques on the vehicle. When torque values are needed,
the control subprogram is called. 1In this particular sub-
program the present values of the Euler angles are sent to
a routine simulating the sun sensors. Angles a, B8, ¥, and §
are calculated and the voltage outputs of the pitch and yaw
sun sensors are determined. The angular velocities are then
sent to a gyro-simulating routine where the proper scale
factor is determined and the gyro outputvvoltages are pro-
duced. Then the gyro voltages are summed with the sun sensor
voltages and these sums are sent to the switching amplifier

routine where the torques are determined.
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2.4.3 Derived Rate Cruise Mode Control Subprogram

The subprogram for derived rate control is similar to
the acquisition program in that it uses identical sun sensor
and switching amplifier routines. The major differences
are: (i) constant solar torques are applied to the vehicle,
(ii) the gyroscope routine is replaced by a derived rate
routine, and (iii) a celestial sensor routine is added.

The performance of this control subprogram when incor-
porated into the overall model program can be seen from
Figure 2.6. Here a Ranger-type vehicle was started with zero
initial conditions under the influence of constant magnitude
solar torques in pitch and yaw. The solar torgues were made
about an order of magnitude greater than those encountered
in actual flights in orxrder to conserve computer time. As
can be seen from the figure, the system quickly established
limit cycle operation in pitch. Yaw and roll rates are not
shown, but limit cycle operation was also present in yaw and
there was some roll motion due to the non-zero products of
inertia. 2.88 volts was .set as the switching level in the
pitch error channel and from the figure the derived rate
voltage increment at switching can easily be observed.

The derived rate feedback voltage is determined in the
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following manner. The controller subroutine is first called
by the main program to determine the vehicle torques. This
subprogram computes the pitch and yaw sun sensor outputs and
the celestial sensor output. Next a derived rate subroutine
is called which computes the proper time constants for charge
or discharge and simple Euler integration is then used to
determine the outputs from the derived rate networks. A
"minimum-on time" is included by setting the main program for
Runge-Kutta integration and forcing it to integrate with the

torque applied for the minimum time.

2.5 Evaluation of the Program

Since a general analytical solution for the vehicle
equations in not known it is somewhat difficult to check
nemerical accuracy. Two types of checks have been made for
a vehicle with a 0.6 mrad/sec® acceleration constant about
all axes. These checks indicate at least 4 significant
figure accuracy for rates and 3 significant figure accuracy
for Euler angles over a 500 second (vehicle time) period when
the integration step size range was set so that the computer
running time (7094) was 2.5 minutes.

The first check was to set the initial roll and yaw

rates to zero and apply torgque only about the pitch axis.
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This gives rise to an equivalent single degree of freedom
system, the response of which can be determined analytically.

The second check was to start with initial rates about all

axes and let the vehicle tunble with no applied torque. Since

the rate equations are norm-invariant for a principal-axis
system the sum of the squares of the rates weighted by their

respective moments of inertia should remain constant

2.6 Future Work

The simulation programs are included in this report in
Appendix G. As can be seen the routines are very segmented;
that is, every program is made up of many subroutines, all
having a uniform common area. This was done 8O that each
subroutine could be used separately or in various groups.
This feature will enable inclusion of the vehicle dynamics
in larger optimum control determining programs which hope-
fully will lead to a better understanding of optimization,
specific controllers, and the optimum solution for various

performance indices.
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CHAPTER 3
THE OPTIMAL CONTROL PROBLEM

3.1 Summary

In this chapter, the possibility of using optimal con-
trol theory for solving a complex space age automatic control
problem is examined. Such a problem for example, is the at-
titude control of a space vehicle. It appears that consider-
able modification of the theory is necessary before practical
controllers can be devised for satisfactory operation of the
space vehicle during the acquisition mode. ‘The difficulties
encountered in using classical optimal control theory are
brought out. One can see that it is desirable to reformulate
the problem as a specific optimal control problem. Several
computational techniques for solving such specific optimal

control problems are explained using many examples.

3.2 A Typical Optimal Control Problem

A typical optimal control problem is the following: The
object to be controlled (the space vehicle) is described by

a vector differential equation of the form
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Py

= f(t, x, u) (3.2.1)

where x is a n-dimensional vector (x;, Xz, .... xn)' , the

state of the system; and u is an m-dimensional vector (u,,

Uz, «oo. um)', the control vector. The prime denotes the
transpose. The components ui(t), i=11, 2, ..., m, are
called the control functions. £ is an n-dimensional vector
(£,. £2., ..., fn)'. The fi, i=1, ..., n, are assumed to

possess piecewise continuous second partial derivatives with
respect to all their arguments.

The control functions may be either unconstrained or
may be required to fall within an allowable range of values.
The general constraint on u(t) will be symbolically denoted
by u ¢ {where Q is a suitably defined set which in general
is assumed to be closed. In most applications the ui(t),

i =1, 2, .., m are required to be at least piecewise con-
tinuous.

Let the object be in an initial state

ﬁ(to) = C (3.2.2)

The control problem is to find u(t) such that a given

functional of x(t) and u(t), called the index of performance
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or return function, of the form
T
1w = [ glt. x(t), u(e) at (3.2.3)
t
(o}

is minimized.

In equation (3.2.3) g is a scalar-valued function of
its arguments and is assumed to possess piecewise continuous
second partial derivations with respect to all its arguments.
The terminal time T is assumed to be fixed in this discus-

sion. In general it need not be so.

3.3 Classical Methods of Soluticn

Fcur classical methods that are available to solve
this problem are (i) the Euler-Lagrange differential equa-
tions, (ii) Pantryagin's maximum principle, (iii) Bellman's
dynamic programming, and (iv) Hamilton-Jaccbi theory. No
detailed derivations of these will be given; only the re-
sults will be stated. A brief "engineering" demonstration

of these methods is given in Appendix A.

i. Euler-Lagrange differential equations

This method yields u*(t) the optimal open loop solu-

tion. The method is as follows. Form the Lagrangian:
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(3.3.1)
L(t. x, u, A) =g(t, x u) + A, £(t x, w) - x)

where )\ is an n-dimensional multiplier vector. The Euler-

Lagrange differential equations are given by:

2f
4 3L\ _ 3L . . _ 3 =
at (’S};) ® ax A= o tax A (3.3.2)
a ey . 3L c
dt -5:%) Y x = f(t, x, ) (3.3.3)
da_ 2L 3L g of
EE(BE) S w7 w - w2 (3.3.4)

(equations (A.l1.1), (A.4.10) and (A.4.11) in Appendix )

Equations (3.3.2) and (3.3.3) are 2n ordinary differen-
tial equations with 2n boundary conditions given by the
initial conditions_g(to) = ¢ and the transversality condi-
tions which are in this case A(T) = 0. Equation (3.3.4) is
a finite equation which yields u as a function of x(t) and
A(t). This is used to eliminate u in equations (3.3.2) and
(3.3.3), and the resulting two point boundary value problem
is solved for x*(t) and A*(t). Substituting for x*(t) and

A*(t) in (3.3.4) results in u = u*(t).
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The Euler-Lagrange method as outlined here implicitly
assumes that the components of the control vector u in equa-
tion (3.2.1) are unconstrained. This is certainly not the
case in the space vehicle attitude control problem. The

method can be modified to take care of bounded control. This

modification, in effect, leads to the use of the Pontryagin's

maximum principle which is discussed next.
The Euler-Lagrange differential equations are necessary

but not sufficient conditions for an optimal solution.

ii. Pontryagin's Maximum Principle.

Form the Hamiltonian; H(t, x, A, u) defined as

H(t, x, A, u) = (A, £(t, x, w)) + g(t, x, w) (3.3.5)

where A is an n-dimensional multiplier vector. u = u*(t, x,
is obtained by minimizing H with respect to u alone. Set:

2H |

2u | 0 (3.3.6)

u = u*
(Note: equation (3.3.6) is true only if the minimum occurs
interior to the set of admissable values for u. In general

the minimization of the Hamiltonian is performed over the

admissible range of the u's.) Define:



33

H*(t, x, A) = Min H(t, x, A, W) (3.3.7)
u(t) ¢ Q

This minimization will yield u* explicitly (at least in

principle) in the form
u* = u*(t, x, A) (3.3.8)
Thus
H*(t, x, A) = H(t, x, A, u*(t, x, A)) (3.3.9)

Form the canonic equations:

dH*(t, x, 1)

x, = axi 1 =21, ceveceoes , n (3.3.10)

3H* (t, x. 1)

Xi = = axi 1 =1, teeeeeeee, N (3.3.11)

(equations (A.4.18) and (A.4.19) in Appendix A)

The solution of equations (3.3.10) and (3.3.1l1) subject
to the intial conditions g(to) = C and the transversality
conditions yields the optimal trajectory x*(t) and A*(t).
This solution is substituted into u* = u*(t, x, A) to yield

the optimal control function.
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In general, the solution of the Euler-Lagrange equa-
tions or the canonic equations yields the optimum open loop
solution. The Hamilton-Jacobi or dynamic programming formﬁ-
lation of the optimum control problem will yield the closed
loop or "feedback law" solution. These methods are dis-

cussed next.

iii. Bellman's dynamic programming.

Dynamic programming is a powerful tool that can be
used to solve, in principle, a variety of multi-stage deci-
sion processes. This notion is made clear if oné considers
the duration of the process, (T-to), to be divided into a
finite number of time intervals. The problem then is to
choose a control vector u as a function of the state x at
the beginning of each of these time intervals such that the
performance index attains a minimum value. It is clear that
this will lead to an optimal control law.

The functional equation of dynamic programming which is
often referred to in the literature as the Bellman equation
is derived in Appendix A.

Since the minimum value of the performance index de-
pends on the initial state C and the starting instant 7,

define the "return function" or "value function" J(C, r) as
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Min T
J(C, 7) = ult) ¢ @ f g(t, x, u) dt (3.3.12)
T st sT T

subject to the differential constraint (3.2.1) for a process

starting at time 7 with the initial state C and terminating

at fixed time T.

The return function satisfies the equation

J(c. T) =.;%:) e Q [g(r, C, u(r)) & + 3 + £(r, €, u(r))a,

T+ &) + O(A‘)] (3.3.13)

Equation (3.3.13) is the discrete version of the Bellman

equation which is useful for numerical solutions.

The continuous version of the Bellman equation is (equa-

tion (A.2.14) in Appendix A)

k-0 Min
at * u(t) € [ate, =+ u(en

+ (E£(E, x*, u(t)), v ) |=0

(3.3.14)
The boundary condition on (3.3.14) is

J(x* T) = 0 (3.3.15)
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In equation (3.3.14), the variables C and 7
have been replaced by x* and t, the "current state" on an
optimal trajectory and current time respectively.

The solution of (3.3.14) with boundary condition (3.3.15)

will yield the optimal control law in the form, u* = u*(t, x*).

iv. Hamilton~Jacobi Theory

In equation (3.3.14) when the minimization is performed,
the resulting equation is called the Hamilton-Jacobi partial
differential equation.

From equation (3.3.5)

H(t, x*, u, A*) = g(t. x*, u) + (£(t, x*, u). 1\*)
| (3.3.16)
In terms of the minimum value of the Hamiltonian, equa-
tion (3.3.14) is equivalent to (equation (A.2.20) in Appendix

A)

3J
o0 * * v = .3.17
: + H (t, xX*, *J) 0 (3 3.1 )

Equation (3.3.17) when solved with the boundary condi-

tion (3.3.15) will yield J(x* t). The multiplier vector

A* is evaluated from the relation

A = V.3 (3.3.18)
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Thus

u*(t, x*) = u*(t, x*¥ a*) |
I

=V .3
x*

The optimal control law is explicitly obtained as a

function of the current time and the state.

3.4 Critique of Classical Methods

The purpose of this section is to outline the diffi-
culties encountered when the methods presented above are
applied to control problems, with emphasis on application
to the attitude control problem.

Consider first the Euler-Lagrange differential equa-
tions (3.3.2) through (3.3.4). For a given set of initial
conditions on x these equations constitute a two point
boundary value problem, i.e. conditions on x at the initial
time and conditions on )\ at the terminal time are specified.
In general two point boundary value problems are difficult
to solve.

 One of the computational methods which appears to be
promising for solving problems of this type is quasilinear-

ization. An outline of this method is given in Appendix B.

R M . .
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After determining x(t) and A(t) then u*(t) the so-called
control function or open loop control can be determined.
Nothing at all is said concerning the synthesis problem,
i.e. finding u*(t, x). Since this is the problem of in-
terest, the solution of the Euler-Lagrange equations pro-
vides only limited data.

The Maximum ”riﬁciple provides a different theoretical
approach to the optimization problem which is particularly
useful for the case of bounded control. Practically, how-
ever, the resulting canonic equations to be solved, i.e.
equations (3.3.10) and (3.3.11), represent the same type
of problem as the Euler-Lagrange differential equations.
Both sets of differential equations represent two point
boundary value problems and in many cases the equations are
identical. Hence the Maximum Principle and the Euler-~Lagrange
equations provide means of determining the control function
u*(t). There still remains the synthesis problem. It is
the exceptional case where the control law can be determined
by the above methods.

This leads then to the Hamilton-Jacobi approach, i.e.
equation (3.3.17). The solution to this nonlinear partial

differential equation will determine the control law, i.e.
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u = u*(t, x). The difficulty is, of course, in solving the
Hamilton-Jacobi equation which is a nonlinear partial dif-
ferential equation. In general this is a formidable problem
and there is no guarantee that the resulting control law can
be implemented in a practical manner.

The Dynamic Programming approach, equation (3.3.13),
provides a practical method of solving £he Hamilton-Jacobi
equation which at the same time preserves the physical chax-
acteristics of the problem and yields some insight. This
technique provides a computational scheme for solving many
optimization problems. When it is applied to a control
problem of the type being considered the results of the com-
putations would be tables of numbers which would specify the
control u as a function of the state variables. A solution
to the synthesis problem which could be instrumented direct-
ly is not provided.

Moreover there is an inherent difficulty which is far
more serious than the ones outlined above. Briefly, the
difficulty arises in that with the above mentioned methods it
is necessary to assume that all of the state variables are
available in order to attempt the synthesis problem. There

is no theory available which would allow incorporating

r
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constraints which specify which states are available to be
fed back.

It is this practical difficulty which restricts the
applicability of the above methods to the attitude control
problem. Thus a reformulation of the optimization problem,
which incorporates the physical constraints placed on the
attitude control problem, is necessary. This leads directly

to the problem of specific optimal control.

3.5 The Specific Optimal Control Problem

In many practical situations, even if an optimum con-
trol law can be synthesized, it will not be a satisfactory
solution because of the complexity of the dependence of
the optimum control law on the state of the system and on
the time.

Often, the form of dependence of the control law, not
necessarily optimum, on the state is known beforehand except
for a finite set of parameters. The known form depends on
the manipulations that are possible with the available phys-
ical equipment.

In the attitude control problem under investigation the
number of states available for measurement is restricted;

and also the reliability of the controller used to perform
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the objectives of the mission is important.
In order to incorporate these factors, the problem will
be formulated in the following fashion and will be termed

the problem of Specific Optimal Control [3].

Problem Statement

The specific optimal control problem is defined in the

following manner:

Given a plant with dynamic equation of the form

x = £(x, u) (3.5.1)

where x 1s an nidimensional vector, the state of the system;
u is a scalar, the control function; £ is a n-dimensional
vector. More generally, the control function can be an
m-dimensional vector (i.e., the plant would be a multi-input
plant) and £ can be an explicit function of time t (i.e.,
the plant is time-varying).

Let the plant be in an initial state
x(0) = ¢C (3.5.2)
Determine the unknown parameters in a control law of the form

u = h(y, b) (3.5.3)

. . . ' ¢ A
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where y is a p-dimensional vector which is a known function
of the state x and b is a g-dimensional constant vector of
the unknown parameters to be determined, such that an index
of performance of the form

T

I (w) = f g(x, u) dt (3.5.4)
(o]

is minimized, where g(x, u) is a scalar valued function of
its arguments and T is the fixed terminal time. More gen-
erally, g can be an explicit function of time t (i.e., the
performance is weighted as a function of time).

The fi' i=1, ..., n, and g are assumed to possess
piecewise continuous second partial derivatives with respect

to all of their arguments.

3.6 Proposed Methods of Solution

The following methods are proposed for solving the spe-
cific optimal control (SOC) problem;
(i) Parameter Optimization
(ii) Transformation to two-point boundary-value problem
(TPBVP)

(iii) Differential Approximation.

t v
.

All these methods are basically computational techniques

and are equally applicable to both linear and nonlinear systems.
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These techniques are explained below using several cxamples.

i. Parameter optimization

The SOC problem may be written as follows:

Given

1% »
4
L]
f
&

with x(0) = C , where
F(x, b) = £(x. h(y, b))

Determine the parameter vector b such that
T

I(®) = | Gz b) dt
(o]

is minimized.

In equation (3.6.3)

G(x, &) = glx, hiy, b))

(3.6.1)

(3.6.2)

(3.6.3)

(3.6.4)

From equations (3.6.1) and (3.6.3), the SOC problem

may be rewritten in the following way.

Given a fixed configuration system (3.6.1) with g

parameters b;, bz, ..., bq and an index of performance which

is some continuous function I(b;, bz, ..., bq) of the var-

iable parameters, i.e.,

B ‘ . »
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Z = I(bl, ba; e o o g bq) (3.6.5)

Specify an algorithm for determining the arguments b,, ba,.., bg
which will minimize the function I by observing the value 2
where Zi = I(bli, b2i' coey bqi) for a sequence of parameter
settings. The surface defined by (3.6.5) is called the IP
surface (index of performance surface).

The problem of determining optimal search procedures
for locating the absolute minimum (or maximum) of a function
of variables is a difficult problem [4]. Even in the case
where it is known, a priori, that the function is unimodal,
the proboem has been resolved only for functions of one
variable {5].

The systems mechanizing such algorithms to extremize
the .function I are called optimizers, automatic optimalizers,
extremal control systems, or hill-climbers. The majority of
the techniques proposed in the literature will work satis-
factorily only if the function I has a single minimum (the
relative minimum problem). Here, a simple modified gradient
metﬁod is presented for the solution of the SOC problem [6].

For various other schemes see [7, 8].
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Stepwise Version of Gradient Method

It is desired to move toward a minimum of I by correct-
ing a set of approximations to the values of the bi which
make aI/abi =0, i=1, 2, ..., 9. The corrections are made
by increments proportional to the negative of the gradient,
i.e., if bi(p) is the pth approximation for bi and aI/'dbi
is the gradient at this point with respect to bi' then (p+l)th

approximation is taken as (for example)
(3.6.6)

bi(p”') =bi(p) -—;%i-Aoi, i=1, 2, .ves q
where Ach is a constant and is chosen depending on the
amount of correction desired at each step.

Assuming the function I has only one minimum, the n-
dimensional minimization problem can be reduced to a sequence
of one-dimensional minimization problems. The minimum in
the direction i = j is obtained by taking the gradient with
respect to bj and following the gradient until I reaches a
minimum. In many cases it is possible to obtain 3 points
such that the minimum lies inside the two extreme points and
then fit a parabolic curve through these points and find the
minimum value of this parabola. The parameter value that

yields the least value for I with the parabolic fit is taken
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as one of the next trial points and the minimization is done

by approximating by another parabola whose minimum is deter-

mined. The procedure is repeated until the desired accuracy

is obtained. 1In the course of computations it is sometimes

necessary to modify the value of & as the minimum is ap-

proached.

Example 3.1

Consider a second order plant described by the differ-

ential equations

]
®
]

Let the initial

X3 (0)

xz (0)

X2

- 2X3 = 3%x3 + u

conditions be

= C

= Ca

and the index of performance be

I (u)

T
= I (xla + xaa + un) dt
o

Let the desired controller be of the form

u =

A X3 + B xj3

(3.6.7)

(3.6.8)

(3.6.9)

(3.6.10)



where A and B are unknown to be determined so as to minimize

the index of performance I, (u).

Substitution of (3.6.10) into (3.6.7) and (3.6.9) gives:

-2X; - 3xa + Ax, + BXj

X
w
{1

and
Min T
I(A,B) = A B J [x,2 + xa? + (Axy ¢ Bxz)? ] dt
! o
For a numerical solution, let

C, = 2.0 , C; = 2.0 and T = 1.0

The computer results are as follows:

(i) 1Initial Approximation

(ii) Search for minimum in A direction

A - 0.052021 B = -0.2

i

I

5.11067343

(3.6.12)

»

' . . »

.
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(iii) Search for minimum in B direction

A

-0.052021 B = =0,223471

I

]

5.11922168

(iv) Search for minimum in A direction

il

A “0005521 B = -00223471

1 5.11018097

]

(v) Search for minimum in B direction

A

-0.05521 B = -0.227940

I 5.11018044

]

(vi) Search for minimum in A direction

A = -0.05521 B = -0.227940

I 5.11018044

(vii) Search for minimum in B direction

A -0.05521 B = -0.226007

I 5.11017662

Thus, the optimum values of the feedback coefficients
are

A -0.05521

B -0.226007

and the minimum value of the index of performance is

I = 5.11017662.
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For comparison, this specific optimal solution is com-
pared with the open-loop optimal solution. The optimal solu-
tion is obtained as follows:

The plant equations are:

K

and the index of performance

Min T
I, (u) = u(t) J (x,2 + x2® + u¥) dt
0 sts=sT e}

Define the Lagrangian as in (3.3.1)
L = (x,? + Xg® + u?) + A;(xg-il)+—Ag(—2x1-3xg+u—ia) (3.6.13)

The Eular-Lagrange equations are

Xy = Xg

Xa = -2X1 - 3Xg + A3 (3.6.14)
A, = -2%; + 2)\g

\e = -2X3 + 3ks - A

u = =0.5X3

The last equation in (3.6.14) is an algebraic relation.

The boundary conditions on (3.6.14) are

* \
* - ' »
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X;(O) = 01 = 2.0 . XQ(O) = C. = 2.0

Ay (T)

X (T) =0 , T =1.0

This two-point boundary-value problem (TPBVP) is read-
ily solved by the quasi-linearization method [Appendix B].

The performance index for the open-loop optimal control is
I, (u = u*(t)) = 5.10841614

Notice that the index of performance for the specific
optimal system in very close to the index of performance
for the open-loop optimal system.

The specific optimal trajectories (x,s, xas)and
us =(Ax1s + Bxas) are compared with the open-loop optimal
trajectories (x;*, x3*)and u* = u*(t)) and are shown in
figure 3.1. It is interesting to note that the specific
optimal trajectory matches the optimal trajectory very
closely.

The Fortran 1I program for the IBM 7094 machine for

parameter optimization is given in Appendix H.

ii Transformation to two-point boundary-value problem (TPBVP)

The parameter optimization method, presented above, for

the type of problems represented by the equations (3.6.1) and
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(3.6.3), i.e.,
x = F(x, b)
(3.6.1)
x(0) = ¢
and
Min T
(k) = j G(x, b) dt (3.6.3)
- (o]

is a suitable approach to the solution if the vector b is of
low dimension. However, it is necessary that the boundary
conditions on (3.6.1) be of the type x(0) = C, i.e., only
initiél conditions may be specified. If mixed boundary con-
ditions are given on the equation (3.6.1), i.e., some at the
initial point t = 0 and some at the terminal point t = T,
then it is necessary to view the problem as a TPBVP.

The basic idea is to consider b to be a part of the

state vector [9]
b = Db(t) (3.6.15)
Since b is a constant vector,

b = o0 (3.6.16)
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By adjoining the equation (3.6.16) to the equation
(3.6.1) the specific optimal control problem is reduced to
an ordinary problem of minimization of an integral with
differential constraints. The unknown initial conditions
b(0) are determined in the course of solving the resulting
Euler-Lagrange equations subject to the given boundary con-
ditions on the equation (3.6.1) and certain other free
boundary conditions obtained from the transversality con-
dition [Appendix A].

The Lagrangian L is
L=G(x b) + (A F(x, b) - X ) + (4, -b) (3.6.17)

where A(t) is an n-dimensional multiplier vector and u(t)
is a g-dimensional multiplier vector.

The Euler-Lagrange equations are
x = E(x, b)

(3.6.18)
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(n X n) matrix

(n X q) matrix

The natural boundary conditions for this problem are

(as obtained from the transversality conditions)
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x(0) =¢ AlT) = 0
(3.6.19)
u(t) = o0

£(0)

The set of equations (3.6.18) represent (2n + 2q) ordin-
ary differential equations, nonlinear in general, with
boundary conditions given by (3.6.19)., There are various
techniques available in the literature for the solution of
TPBVP, e.g. "shooting" methods, gradient methods, and quasi-
linearization [6, 10, 11]. The method of quasi-linearization
seems very promising for the solution of a TPBVP and is ex-
plained in Appendix B. This method is relatively simple
to program and has favorable convergence properties; in
fact quadratic convergence is assured when suitable restric-
tions are placed on the TPBVP [10].

Example 3.2
Consider a second order nonlinear plant described by

the equations

(3.6.20)

=
1

-(x*-1)y - x + u

Let the initial conditions be
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x(0) C,

(3.6.21)

y(0) Ca

The object is to find the specific optimal control law of

the form
u = bx (3.6.22)

where b is the unknown constant and x is the only accessible
state, such that the performance index
1

I, = J (x* + y® + u®) dt (3.6.23)
(o]

is minimized.
Adjoin to (3.6.20) the differential equation
b = 0 (3.6.24)

By eliminating u, the specific control problem is reduced
to an ordinary problem of minimization of an integral with

differential constraints. The resulting equations are

x = vy
§ = =(x®-1l)y - x + bx (3.6.25)
b = 0
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with the initial conditions

x(0)

G

y(0) Ca

and the index of performance

1
1= f (x* + y* + b® x*) at (3.6.26)
(o]

The Lagrangian for the problem is
L= (x* +y" +Db® x*) + Ay-%) + u(-x"y +y - x+bx-y)
+ §(~b)

where A, 4, and § are multipliers.

The Euler-Lagrange equations for the minimization problem

are
x =y
y = -x"y +y - x+ bx
b = 0
A = -2x - 2b®x + 2uxy + p - bp (3.6.27)
B o= -2y - A+ ux® - u
é = =2bx" - ux
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The natural boundary conditions for the problem are

X(O) = C; P Y(O) = Cg

A(l) = u(1) =0 (3.6.28)

£(0) = &(1) =0
For application of the quasilinearization method, let the
initial conditions on b(t), A(t), and u(t) be

b(0) = -0.05

A(0) = 0 ‘ (3.6.29)

B(0) = 0

Then the initial approximation to x(t), y(t), b(t), A(t),
p(t), and §(t) is obtained by integrating the nonlinear dif-
ferential equations (3.6.27) with initial conditions (3.6.28)
and (3.6.29). (In general, this solution will not satisfy
the terminal conditions in (3.6.28).)

The (r+l)-st approximation is determined from the r-th

approximation via the relations

Y

r+l r+l

Y

_ B
( Zxryr l+b_)x + ( xr-rl)yr+ + x b

r+l r r+l 1 r r+l

' -
+ 2xr yr brxr
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e+l - © (3.6.30)
3 . 9 - 2
)‘r+l B ( 2 2br * 2uryr) xr+l +(2urxr)yr+l
- (4b‘__xr + ;.zl_)b1u.| + (Zxryr + l-br)“r+l
- ]
4xryrur + 4brxr + prbr
M B - - 2_1\ - 2
Heil (z“rxr)xr+1 2yr+1 Ar+1 - (xr 1 Bre1 2urxr
. ) ) _ ) ) .
€r+1 ( 4brxr “r)xr+l 2x:br-fl xr“r+1 N 4brxr
X
The boundary conditions on (3.6.30) are
x.,1(0) =G Y ,1(0) = Ca
Ar+1(0) = ur+l(l) =0 (3.6.31)
€r+l(o) = €r+1(l) =0

The numerical solution of the linear system of equations

(3.6.30) is readily obtained by determining the homogeneous

and particular solutions and appropriately selecting the

constant multipliers for the homogeneous solutions,

thereby




1

Y ' < ¢

60

constructing a solution satisfying the boundary conditions

(3.6.31).
For numerical solution, let the initial conditions on

the system be
x(0) = & =10 , y(0) =€ = 1.0

Only 3 iterations are required for satisfactory con-
vergence in this example. The value of b converges as

follows:

Initial Approximation b = -0.05

FPirst iteration b = -0.135108
Second iteration b = -0.135743
Third iteration b = -0.135744

The specific optimal trajectories (xs, ys) are shown
in figure 3.2.
The feedback coefficient is
b = - 0.13574
and the corresponding value of the index of performance is
I(u = bx) = 1.84932

Systems with time-varying deterministic inputs can be

handled easily as illustrated by the following example.
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Example 3.3:
Consider a plant described by the equation
x=-x+£+u (3.6.22)

Let the system be subjected to external time-varying input

(oxr disturbance) § of the form

§ = 0.1 Sin 10t (3.6.33)
Let the plant be in an initial state
x(0) = C (3.6.34)

The object is to find the Specific Optimal Control law of

the form
u =DbxXx (3.6.35)

where b is the unknown constant such that the performance
index
T

1
I, =3 jo (x® + u?) at (3.6.36)

is minimized. Here, T is the fixed terminal time.
This problem is easily reduced to a boundary value prob-

lem as outlined in example 3.2. The results are as follows:
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Terminal Time Initial Condition Feedback Coefficient
T 0 b
0.5 1.0 -0.21008
1.0 0.5 -0.33454
1.0 1.0 -0.33418
1.0 1.5 -0.33404

Figure 3.3 shows the specific optimal trajectory xS}
the external time-varying input § and the control u = bxs
plus the input £ for two-initial conditions C = 1.5 and
C = 0.5 and the terminal time f = 1.0.

It is interesting to note that the specific optimal
control law, in general, depends on the initial state of
the system and the duration of the process. One is now
forced to ask the question: How does the feedback coef-
ficient b depend upon T and C? This is the so-called sen-

sitivity problem and will be considered later.

iii Differegtigl Approximation

In many situations, it is required to choose the best
controller from'a set of controllers. For example, if two
state variables are available, say x and y, then one has to

consider the several forms of controllers that are easy to
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instrument, e.g. u = bx + cy, u = bx + dx® + cy, u = bx + cy +
dy®, etc. The previous two methods, i.e., parameter opti-
mization method and the transformation to TPBVP, may be used
to obtain the specific optimal control laws of the given form
and thep select the best out of this set. However, the re-
peated application of these methods will require a considera-
ble amount of programming effort and computer time. The
method of differential approximation is particularly suita-
ble in such cases.

Philosophically, this method is different from the
previous methods. The solution here requires knowledge of
the open-loop optimal solution (u* = u*(t)) in order to
synthesize the closed loop solution. The open-loop optimal
solution consists of the optimal control function u*(t) and
the corresponding optimal trajectory x*(t) which do not
depend on the form of the specific controller. In general,
the solution using this method will result in a slight de-
gradation of performance compared to the previous methods.
However, the computations necessary with this method are
often easier to perform [Appendix C].

Let the optimal trajectory without the specific con-
troller constraint be x*(t) = @(t). Equation (3.6.1) repre-

sents the system eqguation with a specific controller. It is

. '
! l
i
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easy to see that if thexe exists a set b such that
@(t) - E(e(t), D) =0 (3.6.37)

0O=stsT

then the set b is the optimal parameter set for the specific
controller. However, in general, equation (3.6.37) will not
be satisfied.

Therefore, one intuitively feels that an acceptable
solution may be one which makes the left hand side of equa-
tion (3.6.37) “"close to zero", the closeness being defined
in a suitable manner. For example, b may be obtained as

the solution of

. T
M) et - Ee(e), b |[® at (3.6.38)
- (o]
or
Min  Mex 112 - E@w), »l (3.6.39)
where, in equations (3.6.38) and (3.6.39), || ... || is the

Euclidean norm.

The minimization problem implied by (3.6.38) is often
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easily solved by equating O zero the partial derivatives
of the integral with respect to the components of b; this
will yield a sufficient set of simultaneous equations in-
volving the components of b. The solution of this set of
equations vields the specific optimal controller.

The minimization problem implied by (3.6.39) is more
difficult to solve and will be discussed in Chapter 6 of

this report.

Example 3.4:

Consider a second order plant described by the differ-

ential equations

X1 = X3
(3.6.40)
Xxs = =3%xg - 2%, - 0.5x,° + u
Let the plant be in an initial state
x(0) = &
(3.6.41)
x3 (0) = Cg
The performance index to be minimized is
T
I, = _[ (%2 + %32 + u?) dt (3.6.42)

(o)
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' where T is the fixed terminal time.
l For numerical results, let

’ C' = 200 (3.6.43)
. T = 1.0
' (i) oOpen-loop optimal solution
l The Lagrangian is
' L= (x? + x? +u®) + XMxg - X,)
l + p(-3%x3 -2x; - 0.5%,% + u = ;(a)

‘ The Euler-Lagrange equations are
' ;Cx = Xg

;c. = -3x5 - 2x; - 0.5x;? - 0.5u

. A o= =2x%, + 28 + 1.54 x,°? (3.6.44)
. B = =2Xg - A + 3u
|, u = -0.54u
l' The last relation in (3.6.44) is an algebraic relation.
' The boundary conditions on (3.6.44) are
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x; (0)

it
N
o

' xa(O) = 2-0
(3.6.45)

A(l)

]

u(l) = 0

The set of differential equations (3.6.44) with bound-
ary conditions (3.6.45) is solved by the method of quasi-
linearization. Let the solution be u*(t) and x{ = o(t).

The value of the performance index for the optimal

solution 1is
I(u = u*(t)) = 5.05815351 (3.6.46)

(ii) SOC (u = Db x;) ¢
Let the only accessible state be x = X, and the de-

sired SOC be of the form

Then the problem is to find the feedback coefficient b

such that the solution of the differential equations

Xy = X3

"3x: - le - 0.5)(‘3 + bxl

by
[
!

or

X + 3X 4+ 2x + 0.5x® -bx = O (3.6.48)

¢ k3 . N bl
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with the boundary conditions

Xy (0)

il

x(0)

]
(e}
>

xa (0) x(0)

Ce

approximates the optimal trajectory x¥*t).

Here, the value of b will be picked such that
T

I (@ + 30 + 20 + 0.50° - bp)? at (3.6.49)
e
is minimized with respect to b.

The minimization of the integral in (3.6.49) with respect

to b results in the equation

T T
b(J ¢ dt) = (J (3 + 30 + 20 + 0.5¢0%)e dt) (3.6.50)
(e} O

Consider the quantity in the parentheses in the integrand

on the right-hand side of (3.6.50). The following relation

is true:
A + 36 + 20 + 0.5¢° = u*(t)
Thus
T
[ urte) ot at
p = —2 (3.6.51)

T
J ©(t) dt
[o]
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The value of b for the initial conditions given in

(3.6.43) is
b = 0.039054
and the value cof the performance index is

I(u = bx,) = 5.10033399

The specific optimal trajectories (x,s, x,s) are com-
pared with the optimal trajectories (x;*, x3*) and are shown
in Figure 3.4.

It is interesting to note that the specific cptimal
trajectory matches the optimal very closely. The percentage
deviation in the index of performance with respect to the
optimal solution is

I(u = u*(t)) - I(u = bx)
I(u = u*(t))

x 100

~ 0.85%

This indicates that in an engineering problem of this

type an SOC of the. form u = bx is sufficient. Moreover, this

type of control is extremely simple to realize compared to

the optimal control function. It is possible in some cases
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to obtain better overall performance using an SOC as compared
to the optimal because of the instrumentation problems in
realizing the optimal control function.

(iii} soCc (u = bx, + cx}):

Let the only accessible state be x = x,, and let it be
desired to determine how much improvement over the performance
obtained above can be achieved by using a nonlinear control-
ler, say of the form u = bx, + cxj] .

Here, the values of b and ¢ are obtained such that

T
j (d + 3@ + 20 + 0.5¢° - bp - co*)? dt (3.6.52)
(@)

is minimized.
Notice, again
b + 30 + 20 + 0.5¢° = u*(t)
Thus (3.6.52) reduces to

T
j (u*(t) - b - c@®)? dt (3.6.53)
(o]

Min
b, ¢

The minimization results in the following set of linear

equations:
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T T
(J e ae)p+ ( Tete) a)c = [ ur(t) oft) at
(o] o (o}

(3.6.54)

(fT @t (t) dt) b + ( J‘T @° (t) dt) c
o) (o}

J‘T u*(t) ¢ (t) at
(o)

The solution of this set of equations yields

2
]

0.287247

-0.068932

(o]
]

for the same initial conditions as in (ii), and the value

of the performance index is
I = 5.08265859
The percentage difference between this value of the

index of performance and the optimal value is

I(u = u*(t) - I(u = bx, + cx,°)

I(u = u*(t))

X 100

s 005%

The improvement in the performance compared to the SOC

u = bx, is very small.
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(iv) soc (u = bxy + cxz):
Now suppose that the second state x3( = x) is also
accessible and it is desired to build a controller of the

form
u = bx; + Cxj3
This leads to the minimization of the integral

) T
:“c‘ _[ (u*(t) - be(t) - co(t))?® dt (3.6.55)

o)

The values of b and ¢ are obtained as outlined above,

b -0.046133

c -0.178149

and the value of the index of performance is
I = 5.06101251
The percent deviation of this index of performance from

the optimal value is

I(u = u*(t)) - I(u = bx; + cx3)

I(u = u*(t))

X 100

~ 0.06%
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This solution is very close to the optimal solution.

The specific optimal trajectories (x,s, x,s) for the
controllers u = bx, + cx,® and u = bx, + Ccxy are very close
ﬁo thevoptimal trajectories and are about the same as shown

in figure 3.4.

The different controls, i.e. u*(t), u = bx,, u = bx, + cx,?

and u = bx, + cxg, are shown in figure 3.5.
It should be mentioned here that once the optimal solu-

tion to the problem has been obtained, different types of

controllers which are easy to instrument can be obtained

with little additional computation using differential approx-
imation.

The methods of parameter optimization and transformation
to TPBVP require an initial approximation for the unknown
coefficient vector b and the convergence of these schemes
depends on a good initial guess. One may try to combine the
advantages of these techniques. For example, differential
approximation demands very little machine time but gives
only an approximate'answer which may be used as an initial
guess for the quasilinearization scheme. The quasilinear-
ization method is an accurate tecﬁnique with quadtatic con-

vergence properties, however it involves relatively long
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computing times.

For example 3.4, the qussilinearization (Q.L.) and
differential approximation (D.A.) are combined in the fol-
lowing manner:

(i) Pind open-loop optimal solution, i.e. solve the TPBVP

(3.6.44) by Q.L.

(ii) Por SOC u = bx,, find b by D.A., then apply Q.L. for
more accurate solution.
(III) Repeat part 2 for SOC u = bx, + cx,? and u = bx, + cxsz.

For the initial conditions (3.6.43), the results are as
follows:

(i) Open-loop optimal solution.

I(u = u*(t)) = 5.0581535

(ii) soC (u = bx,):

D. A. scheme

b = 0.039054 I = 5,1003339

Q. L. scheme

b = 0.039605 I = 5,.1003334
(iii) SOC (u = bx, + cx,%):

D. A. scheme

b = 0.287247 c = ~0.068932

I = 5.0826586



Q. L. scheme

b = 0.289593 ¢ = -0.069367
I = 5.0826567

(iv) soC (u = bx; + cxg):
D. A. scheme
b = -0.046133 c = -0.178149
I = 5.0610125
Q. L. scheme
b = -0.046353 | | c = -0.178814
I = 5.0510125

This indicates that the D. A. solution in many cases
should suffice unless a very accurate solution is desired.

A listing of the complete FORTRAN program, consisting of
a main program and the derivative subroutines is given in

appendix H.

3.7 Sensitivity Analysis

It was indicated in the examples that the feedback co-
efficients in the specific optimal controller depend on the
boundary conditions on the state variables and the duration
of the process. For satisfactory implementation of the SOC

controller, it is desirable that this dependence should be the

- '
-
*
’ I
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least possible. The study of this dependence is called the
sensitivity analysis.

In different cases, different aspects of sensitivity
analysis may be of interest. In example 3.2, the feedback
coefficient b depends on C,, C; and T. 1If the variations
in these boundary conditions are small, it may be of inter-
est to find the partial derivatives of b with respect to C,,
C; and T. Such an analysis can be made using the classical
perturbation techniques [12].. In other cases, if the ini-
tial conditions can take values from a set (normally bounded)
then it is desirable to study the variation of feedback
coefficients over this set. For such studies, the invariant
imbedding technique [13, 14] is often useful.

The variation of the feedback coefficients in the SOC
problem also depends on the number of states available for
manipulations. This is indicated by the following example.

Example 3.5

%
»

Consider the plant described by the equation.

X 4+ 3x + 2x = u

Oor in state variable form
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(3.7.1)

X = =3Xg - 2X; + u

The performance index to be minimized is

-]
I = I (x,2 + x2a° + u®) at (3.7.2)
o

Let the plant be in the initial state

x1(0)

¢,
(3.7.3)

]

x:(O) Cg

The optimal trajectory for this problem is readily ob-
tained by solving the canonic equations (equations (A.4.23)
and (A.4.24) in appendix A). The optimal control function
is

a*(t) = -0.235(C, + Ca) e 2-236% (3.7.4)

and the corresponding optimal trajectory is

-2.236t

-t
-0.81(Cy+Cq) e + 0.81(2.236 C,+ Ca) e

x;*

(3.7.5)

1.81(C,4Cy) e 2°23%% _ 4 81(2.236 Cy4C3) e °

]

Xa*
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If both the states are available, and since the plant
is linear with quadratic performance index, it is possible

to write the control function (3.7.4) as
u* = -0.235x; - 0.235x, (3.7.6)

In this case the feedback coefficients are independent
of the initial conditions C, and Cg.

However, if only one state is available and the desired
SOC is of the form u = bx, then by the differential approxi-

mation method, find b as
Mi - ]
b“ I [% + 3x + (2-b)x ] dt (3.7.7)
o
This minimization results in

(0.1n® + 0.14n + 0.024)
(0.877n* + 0.4396n + 0.0693)

(3.7.8)

where n = C,/Cg. Figure 3.6 portrays the dependence of b
on the ratio n. The value of b is fairly constant except
in the range where C,/C; is small. This type of behaviour
one would expect since the variable fed-back has relatively

small magnitude compared to the second variable.
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Example 3.6
éonsider the same plant as in example 3.5, i.e.
X, = Xa
o (3.709)
Xg = =3Xg - 2x, + 1u
with the initial conditions
Xy (0) = C;
x3(0) = G
Let the performance index to be minimized be
1
11=I (%, + x3% + u®) at (3.7.10)
o

Let x, be the only available state and let the initial
conditions be in the range -2 to 2.

If the initial condition on xg is unknown and it is
assumed that C; can take values from -2 to 2 with equal like-
lihood, then it may be desirable to study the variation of
the feedback coefficients for different values of C;, taking
Ca = O.

For the SOC u = bx; the feedback coefficient b turns'out
to be a constant and equal to 0.024502 for |c,| < 2 and

Ca = 0. If an improvement in the index of performance is
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desired, consider an SOC of the form u = bx, + ¢x%. In
this case b is constant again and is equal to 0.210114 but
c depends on the value of C, as shown in figure 3.7. This
type of behavior for c results because when C, is small
(less than 1), =,® is very small and a large value of feed-
back gain ¢ is necessary to get any contribution from the

ox,® term. Since the improvement in the index of perform-

ance is not significant, it is obvious that the u = bx, + ex, ?

controller is not satisfactory compared to u = bx,.

3.8 Conclusions

The space age optimum control problems are so complex
that it becomes necessary to incorporate limitations on the
measurements and restrictions on the controller for relia-
bility and physical realizability in the optimization prob-
lem. The specific optimal control formulation is one way of
attacking such problems. It was shown that deterministic
disturbances can be taken care of in designing the control-
ler. To make the SOC approach more meaningful, a study of
systems with unknown disturbances is highly desirable. 1If
some characteristics of the disturbances can be obtained, it
may be desirable to design a specific optimal controller for

the worst case disturbances.
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It was pointed out that the sensitivity problem for
SOC is of importance. Some numerical approaches to this
problem were presented; however, it is highly desirable

to develop analytical tools to study such problems.

4 .
‘ N . .
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CHAPTER 4

BOUNDED CONTROL PROBLEMS

4.1 Summary

In this chapter the optimum control problem involving
constraints on the control variables is discussed. A brief
summary of existing methods to solve bounded control prob-
lems is given. The necessity of producing the optimum con-
trol function in these problems is explained, and a compu-
tational algorithm using "approximation in policy space" for
obtaining the control function is proposed. This algorithm
is applied to a number of examples including the space vehi-
cle attitude control problem. Future research and investi-

gations are outlined.

4.2 Introduction

A number of examples can be given in order to illustrate
a typical bounded control problem. Consider, for instance,
the problem of controlling the attitude of a space vehicle.
The space vehicle dynamics can be represented by a set of

six ordinary differential equations of the form
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_4;’ = f (w, a, u) (4.2.1)

IR
[
{¥e}
3
?

—eew RRea - O

and u the control torque vector.

The object is to synthesize a control law which will
transfer the space vehicle from any initial state to a de-
sired final state in a way such that a performance measure
is extremized. Also in attitude control problems an addi-
tional restriction is that the magnitude of the components
of the control input u be bounded due to the physical re-
striction that the jets can deliver only a certain level of
torque. This added constraint on the control usually makes
it more difficult to obtain the solution. In order to il-
lustrate the various methods which exist to solve the bounded
control problem it is best to formulate the problem in gen-

eral terms.

4.3 Methods of Solution [5,17,21,24,15,App. A]

Let the dynamical system under consideration be repre-
sented by the following first order vector differential

equation of the form

’

‘
‘ . i
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é = f£(t, x, u) x(0) = X5 (4.3.1)
where X is the n-dimensional vector state
and u is the m-dimensional vector control
Constraints on the control are usually of the form
K,. su, sK_. ) = 1,2,*** m 4.3.2)
1j 3 2] ) (
Consider the performance measure to be of the type
T
I g(t, x, u) dt (4.3.3)
o

where g(t, x, u) is a non-negative scalar function of its
arguments. T, the duration of the process, will be con-
sidered to be fixed. The object is to find u such that
(4.3.3) is minimized subject to (4.3.1) and (4.3.2). The
following methods can be utilized to solve the above problem:

(i) Dynamic Programming

(ii) Hamilton-Jacobi Equation

(iii) Calculus of Variations

(iv) Pontryagin's Maximum Principle

In order to illustrate the methods (i) to (iv) above

consider the simple scalar example given below. Let the

system be governed by the equation
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X = ax + u (4.3.4)

with x(0) = x
o

The constraint on u is
jul =1 (4.3.5)
The performance measure to be minimized is

T
f (x® + u®) dt (4.3.6)
[e}

(i) Dynamic Programming (5,15,18,26]

To solve the problem as defined by (4.3.4).,(4.3.5) and
(4.3.6), consider the class of processes of the variational
problem of arbitrary initial state C and initial time 7. 1In
other words one wishes to minimize the functional

T
I(w) = [ (x* +u®) at (4.3.7)
T
with x(7) = C

The functional I(u) subject to (4.3.4) and (4.3.5) can
be thought of as the cost of the process which clearly de-
pends on C and T and u(t), t € [, T]. The minimum of I(u)

over all allowable u depends only on C and 7. Hence define

the value function

. ' -
.
o +
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J(C, T) a Min (1(u)] (4.3.8)
|u|=1

Applying Bellman's principle of optimality, one obtains

J(c, 1) = mT [(c’ +ut A+ gC o+ aC, T+ L) (4.3.9)
jul <1

The terminal condition becomes J(C, T) = O from (4.3.8).
The recurrence relation (4.3.9) can be solved by search tech-
niques and one can in principle obtain the control law, i.e.
u = u(t, x). The main difficulty in this method is the
'curse of dimensionality' [18] which for higher dimensional

problems makes the solution impossible.

(ii) Hamilton-Jacobi Equation [1]

The Hamiltonian for the problem is
H(x, A, u) = Au + Aax + (x? 4 u®) (4.3.10)

where A is the multiplier. The value function J(t, x) is

defined exactly as in equation (4.3.8) to be

J(x, t) = Min J (x® + u?®) dat (4.3.11)
ful=1
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A slight change of notation is evident when equations
(4.3.8) and (4.3.11l) are compared. The value function in
eq. (4.3.11) is associated with the cost of a process start-
ing in state x at time t.

The Hamilton-Jacobi Equation for the problem is

ST g
¢t HY () (4.3.12)

where H* is the Hamiltonian which has been minimized with
respect to u. The multiplier \ can be written in terms of
J as )\ = aT/3¥x (generally ) = VxJ)

The u which minimizes the Hamiltonian is then,

ST
a* = (4.3.13)
w[-18] |32
Hense, H*(x, %% = m(%%, x) + x° (4.3.14)
where o(%%, x) = %% u* - u*? 4 %% ax (4.3.15)

From (4.3.14), one can rewrite (4.3.12) as

.

v
»
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J KA s _ ‘
3t Pl g X+ X =0 (4.3.16)
The boundary condition for (4.3.16) is
’ J(T, x) =0 (4.3.17)

from the definition (4.3.11). The solution of the partial
differential equation (4.3.16) subject to the condition
(4.3.17) will provide the control law, i.e. u = u(t, x).
Equations (4.3.16) and (4.3.17) are very difficult to solve

in general and analytical solution is almost impossible.

(iii) cCalculus of Variations [21,24)

-

To attempt a solution via the calculus of variations

one transforms the inequality constraints of u to an equal?

*

ity constraint. This is done in the following fashion.

Define an auxiliary variable z such that

z? =1 - (4.3.18)

The Lagrangian of the variational problem is

L=x*+u+ )\(ax +u - i) + A (1-u®-2%) (4.3.19)

where )A; and )3 are Lagrange multipliers.

The associated Euler equations are

n g
«
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X = ax + u
A = =A - 2X
0 = XA + 2(l-2x3)u (4.3.20)
0O = 1~-u" -z
0O = Xa 2
The boundary conditions are x(0) = C, A, (T) = O.
The analytical solution of (4.3.20) along with the
boundary conditions is quite impossible in general and one
must resort to numerical techniques in order to obtain a

solution.

»
[
+ .

(iv) Pontryagin's Maximum Principle [21,24]

The Hamiltonian for the problem is
B2 ax + a4 x® 4+ u? (4.3.21)

The associated canonic equations are

ax + u*

x
(4.3.22)

i -al - 2%

where u* is obtained by minimizing the Hamiltonian with

0

respect to u over the interval 0 < t s T. Then u* is

(_ A 2|
2 2 | =1
u* =¢ (4.3.23)
rAY 1A
Sgn\z) 2 | *1
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One of the boundary conditions for (4.3.22) is x(0) = C;
the other one is obtained from the transversality condition
for the variational problem and is A(T) = 0. The solution
of the two point boundary value problem (4.3.22) provides
the control function u = u*(t). In many cases the elimina-
tion of u* from the canonic equations (4.3.22) is difficult
since u* may not be explicitly determined in terms of A and
x using the maximum principle. Even when u* can be elimin-
ated, one faces the formidable task of solving a two point
boundary value problem.

From the foregoing explanation of existing methods, one
finds that it is indeed difficult to produce the optimum u,
either as a control function or control law even for the
simple scalar example. 1In order to overcome these diffi-
culties, it is apparent that one may have to resort to spe-

cific controllers,

4.4 Specific Control [7,8,27)

In proposing a specific control for any problem, the
choice is dependent upon the ease of instrumentation, cost
of controller and the number of accessible states. The final

design will rely heavily on the type of performance obtained,
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for example the difference in performance index value from
the optimal. In such a design one has to realize that com-
promises have to be made when one has to decide between two
conflicting interests. It should be noted that for the
bounded control case, the specific controller should also
satisfy the constraints on u.

Consider the same scalar example as in section 4.3.

A specific controller that one may propose can take the

form
u = sat (ax) (4.4.1)
ax lax| =1
where sat (ax) = {sgn(ax) |ax| 21 (4.4.2)

It is seen that (4.4.1) satisfies the constraints on u,
and one wishes to find the unknown parameter "a" so as to
minimize the performance measure given by (4.3.6). One of
the methods by which the optimum "a" can be found is by
parameter optimization. A number of techniques are availa-
ble for doing this [5,7.8].

A different approach could be taken in proposing speci-
fic controllers. One can change the "hard constraint" on

the control to a somewhat equivalent "soft constraint."

«

B , + .




.

t

¥ R .

98

This is done as follows. Remove the inequality constraint
(hard constraints) on u. Impose a heavy penalty in the
performance measure for deviations from the hard constraint.
For example the performance measure given by (4.3.6) is
changed to

T
J (x* + u? + auZN) dt (4.4.3)

where a is a large positive constant and N a positive integer
greater than unity.
Now along with (4.4.3) one can propose an unconstrained

specific control of the form
u = bx (4.4.4)

Due to the weighting on u which imposes a heavy penalty
whenever the magnitude of u exceeds unity in (4.4.3) one can
intuitively expect that the optimum u obtained by minimizing
(4.4.3) to be almost constrained within the bounds. The
problem now has been reduced to the SOC problem of Chapter
3 and the solution can be effected by any one of the methods
given therein. The choice of values for a and N will depend
to a large extent on the loss of performance and the magni-
tude of violation of the constraints on u which can be tol-

erated.
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Before any synthesis procedures for these specific con-
trollers are attempted one clearly sees the necessity of
obtaining the optimal solution so that one would have a
"yardstick" for comparison in design. As seen from section
4.3, the optimum solution is quite difficult to obtain an-
alytically. Hence, one has to look for effective computa-
tional algorithms in order to obtain the optimal solution.

One such algorithm will be discussed in the next section.

4.5 Approximation in Policy Space [15,18,26,28]

Consider the general set of system equations
x = £(t, x, ) (4.5.1)

with 5}0) = X

Let the constraint on u be of the form

Iui| U (4.5.3)

The performance measure to be minimized is
T

J g(t, x, u) dt (4.5.3)
o

and T is fixed.

. B
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To solve this variational problem one writes the Hamil-

tonian as

H(t, x, u, A) = (A, £) + g(t, x, u) (4.5.4)

where )\ is the n-dimensional multiplier vector. The asso-

ciated canonic equation are

g = f£(t, x, u¥*)

* (4.5.5)

A

where u* is the u which minimized the Hamiltonian at each
instant of time over the interval 0 < t s T and H* is

H(t, x, u*, ).

In (4.5.5)
OH* dH* dH*
* = _— e o0 . *
gx 3x, ' ¥xp axn (4.5.6)

The boundary conditions are

x(0) =X, » AlT) =0 (4.5.7)

from (4.5.1) and the transversality condition of the varia-

tional problem.

The algorithm proposed utilizes the following procedure.
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Choose an initial guess on u denoted byy_O and solve the
TPBVP given by (4.5.5) and (4.5.7), obtaining initial solu-
tions for_g_co and x°, respectively. Now utilize the Maximum
Principle and minimize (4.5.4) with respect to u to obtain
the first approximation u!. This approximation is utilized
to produce the trajectories x* and \! using (4.5.5) and
(4.5.7).

This process is repeated until convergence results, and
u*(t) is produced along with the optimal trajectory x*. The
minimization procedure is computationally very simple as the
search procedure has only to scan over a bounded set of u
values due to constraints on u given by (4.5.2). As the
procedure involves an initial guess on u, the "policy", and
successive approximations on it, it is called "approximation
in policy space."

In order to illustrate this method consider the follow-
ing simple example.

Sxample 4.1
Consider the second order non-linear plant with a time

varying input described by

(4.5.8)

Xg = =3Xg - 2X%X; - 0.5%x,% + 0.1 sin 10t + u
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Let the initial conditions be
Xy (0) = C
(4.5.9)
Xga (0) = C;
The performance measure to be minimized is
5
I (%, + x3° + u®) dat (4.5.10)
o _
The constraint on u is
jul s 1 (4.5.12)

The Hamiltonian for the variational problem is
H=(x,° + %32 + u?) + Aixa + \g(-3x%x3 - 2x; - 0.5%, 3
4+ 0.1 sin 10t + u) (4.5.12)

The canonic equations are

Xy = X3

Xg = =3X3 = 2X; - 0.5%;% + 0.1 sin 10t + u*(t)

-2x%, + 2\ + 1.5ka%,” (4.5.14)

>
L
i

4
n

-Zxa - Al + 3h
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The boundary conditions are

X3 (0)

Cl X], (5)

ti
o

(4.5.15)

"
o

xg (0) Ca Ag (5)

The Hamiltonian being a minimum for u* implies that

¢

1 Ae
> Aa for }?;l <1

u* =¢ + 1 for — < -1 (4.5.16)

In many cases it might not be even possible to represent u*
as a function of multipliers )A; and X;.

The solution to this problem is obtained in the follow-
ing manner.

I1f one has the current approximation to u*(t) denoted

*
by un(t), the corresponding functions x., (t). x2n(t), Xln(t),

in

in(t) are found as explained previously, and the next ap-
*

proximation un+1(t) is found by a search method or from an

analytical expression.

The basic plan involves using quasilinearization for

solving the two point boundary value problem.

.
[ ' . . "
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xl,n = xz,n
: = - - - 2
len 3x2,n le,n l.le'n_l x1'n
3 * :
- xl,n—l + un(t) + 0.1 sin 10t
= - 2
ll,n 2x1'n + ZXZ,n + 1.5x1’n~l Al,n-l
+ 3\ -
2,n-1 *1,n " 3X3,n01 ¥ 0o
Az,n = -2x2,n - xl'n +‘3x2'n (4.5.17)
with the boundary conditions
xl.n(o) =G
X, (0) = Cg
Xl, (5) =0
Az’ (t) =0
for the determination of Xyt x2n. Xln' AZn' In equation

*
(4.5.17) un is the current approximation and

is to be thought

of as being a fixed function of time while s0lving the

quasilinear equations. Notice that an initial approximation

*
on uo(t) is necessary to start the iterative

calculations.

The (n+l)-st approximation to u*(t) could be found

either by a search of
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. Q -
Min [u + x2n u] , o= Ky 4 (4.5.18)

or by the analytical expression (4.5.16).

be

X3 (0) = 5,0 x,(o, = 8,0

The numerical procedure explained above is now applied, and
convergence to the solution of the original problem occurs
in 3 iterations. The system trajectory x*(t) and the con-

trol u*(t) are given in Figures 4.1 and 4.2 respectively.

4.6 Results and Comparisons [App. I]

In this section, a few selected examples are considered

and the comparative results are illustrated.

Example 4.2

Consider the simple linear system of the foxm

ix = Xg
. (4.6.1)
Xz=-2x;—3x.+u
The performance measure to be minimized is
1l
I (x1a + XQa + u’) dt (4.6.2)
o

' 0 . v N .




PLANT EQUATIONS
K = %y
k= -2x)-3%,-0.5x
+0.1 Sin 10t + u 8

Pl.= f:(xfo x:+ u?)dt ¢
= 54.033
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I.C.
®

FIGURE 4.1
Optimal trajectory x* for Example 4.1

!

‘ . ‘ ¢ ) ‘
@

H
[ Ya
b




107

'\
u#
e . . . _ —— =
0 .0 20 30 4.0 50

FIGURE 4.2

Optimal Control u*(t) for Example 4.1
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with the constraint on u being
lu| =1 (4.6.3)

In figures 4.3 and 4.4, the performance of this system
for two different specific controllers is given for the
initial conditions x, (0) = 5.0, xg (0) = 8.0. Also the op-
timal trajectory x* and control u* are plotted for compari-
son.

The two types of specific controllers are (1)

u = sat(ax; + bxz) [the sat function is defined in (4.4.2))
(ii) u = bx, along with the soft constraint in the perform-

ance measure of the type

1
I (%% + x3® + u® + u*) at
o

The values of the performance indices corresponding

to the two types of controllers are as follows.

(1) u = sat(ax, + bxgy)

P.I. =. 42.3847
a = =0.0418
b = =0.2007

(ii) u = bx, along with the soft constraint

term in the integrand of the redefined performance index
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PLANT EQUATIONS
X, = Xg

ia = -3!2-‘2)('4»0 4 X
RL= [ @+ x2eut)at 8 °

FIGURE 4.3

Comparison of trajectories for Example 4.2
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Vi
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o (1), uis |

A Uy *Sot (ax « bx,)

a = -0.04I8
b =-0.2007

" oy, =bx

b =-0.0403

FIGURE 4.4
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of the form
1
J (x,° +x3% + u® + u*) at
o

)
-
ft

42.7768

o’
i

-0.0403

It is to be pointed out that P.I.'s for (i) and (ii)
are calculated using (4.6.2) even though the solution for
(ii) uses the idea of soft constraint as given above, so that
comparisons are compatible. The optimum performance index
for this problem is

P.I.* = 42,3790

It is quite apparent that specific controller (i) is
superior to (ii) as far as performance in concerned, but as
pointed out earlier, the final choice of controllers can be
made only after weighing the various factors, such as cost,
simplicity of instrumentation and performance. It is also
intuitively evident that (i) should be better than (ii)
since information about both the states is utilized by the
specific controller in (::. <1he programs utilized to pro-

duce the different :v. ~...1= are listed in Appendix I.

»

b} .
1 . '
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Example 4.3
Consider now a non-linear system of the form
*x = Xa
(4.6.4)
Xg = -2%; - 3%y - 0.5x%,% + u
The initial conditions are
Xy, (0) = 5.0 xg (0) = 8.0
The performance index to be minimized is
1
J' (%,? + xa® + u?) at (4.6.5)
o
and u is constrained by
lul =1 (4.6.6)

The same controllers used in Example 4.2 are considered and
the results are given in Figures 4.5 and 4.6.
The performance indices and the parameters of the con-

trollers are

(1) u = sat(ax; + bxg)
P.I. = 52.8778
a = =0.0212
b = -0.1431
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PLANT EQUATIONS

%= Xg
%= -3x,-2x,-0.5xP+ u \ LG
! .
PL = [(x3 xB+ ut)dt  BF ¢ i
- 6k
4l
2k
2 o 2 4 X
a

FIGURE 4.5

Comparison of trajectories for Example 4.3
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u' (1), lul s |

u, * Sat (ax, + bx,)
a = -0.02128
b = -0.143ll

u,,* bx, |
b= 0.17425

FIGURE 4.6
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(ii) u = bx; along with a performance index incorpor-

ating the soft constraint of the form

1
I (%32 + uz® + u® + u*) at
o

o
.
-
.
]

53.4632

o
li

0.17425
The optimal performance index is

P.I.* = 52.8735

Example 4.4

In this example consider the system of equations which
governs the rotational motion of a rigid body such as a
space vehicle about its center of mass. The equations of

motion are

11(:)1 = (Ia - IS) Wg s + Ty
Ipwg = (I - I;) wy wy + T3 (4.6.7)
Iséa = (I, - Ig) w wg + T,
where
w, = angular velocity about the i-th principal
axis
Ii = the moment of inertia about the i-th prin-

cipal axis




116

L control torQue on the i~-th principal axis.
The constraints on the control torques are derived

from the condition that the jets can only deliver a certain

1

level of torque in the case of a space vehicle.

The constraints can be expressed in the form

Iril < T, (4.6.8)

From the equations (4.¢,7) and (4.6.8) the attitude con-
trol problem of a space vehicle can be posed as follows.
Equation (4.6.7) represents the motion of the space vehicle
just after launching (while tumbling) and (4.6.8) the con-
straints on the attitude control jets. The objective now
is to find the appropriate torques along the principal axes
such that a certain performance measure is minimized. fhis
measure should be one that weights the angular velocities
as well as the energy expended in reducing these velocities
in a fixed amount of time. This amounts to slowing down the
space vehicle to low angular velocities where linearizations
can be made and appropriate linear controllers can take over
the task of controlling the attitude accurately.

For this example, let

[ M ) . .
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Then the equation (4.6.7) becomes in terms of the angular

momenta (y:.L = Ii“ﬁ)’

y1 = =0.025y,ys + 4,
ya = 0.075Yay;y + ug
ys = -0.05 y,¥s + U3

The performance criterion used will be a fixed time,

minimum energy type as given by

T

o
The constraints on u,;, ug and u, are taken to be
|ui| <1 , i=1, 2,3 (4.6.11)

For this example, the time is fixed to be 1, and the
optimal trajectories y,*(t), ya*(t). ys*(t) and the optimal
controls u;*(t), uzg*(t), and ug*(t) are given in Figure 4.7.
for the initial conditions y, (0) = 10.0, yz(0) = 8.0, and
ya(0) = 6.0. It is to be noted that the optimal solution
produced here is expected to act as a "design standard" when
specific controllers are designed and their relative merits

can then be evaluated.,

. . \ . ‘
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Remarks:

In Example 4.2 and 4.3, specific controller (i) is
found by the simple gradient technique described in Chapter
3 for parameter optimization and the computational algorithm
is given in Section 3.6, and the program used is listed in
Appendix I. For specific controller (ii), the quasilineari-
zation method of solving TPBVP as explained in Appendix B is
utilized and the program used is listed in Appendix I. The
programs for producing the optimal solutions to examples

4.2, 4.3 and 4.4 are also given in Appendix I.

4.7 Conclusions and Future Work

A computational algorithm for producing the optimal
control function u*(t) in a bounded control problem has been
proposed and illustrated. The need for producing u*(t) is
for the reason of obtaining a "standard" or "“yardstick" for
comparison purposes. Two kinds of specific controllers have
been suggested and comparisons are made with the optimal
solution. The attitude control problem which is of interest
to JPL has been posed and the solution by this algorithm has
been presented.

Once there is a design standard, a number of specific

controllers can be proposed for these problems and their

1
\ .
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relative merits examined. The extension of this method has
to be considered for free time and time optimal problems.
The approach to be taken in these cases would be one of

“digital experimentation" taking into account all available

. |
information from the analytical formulation of the varia-

tional problem. This means that emphasis will be given to
numerical solutions of the various problems in order to pro-

duce a series of useful computational algorithms.
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CHAPTER 5

STATE ESTIMATION FOR NON-LINEAR SYSTEMS

5.1 Summary

The problem considered in this chapter is the sequential
estimation of states and parameters in noisy non-linear sys-
tems. The class of systems considered are those in which the
dynamical behavior is described by an ordinary differential
equation. No statistical assumptions are required concerﬁ-
ing the nature of the unknown inputs to the systém or the
measurement errors on the output. For estimation purposes a
least squares criterion is used. The new feature of the
approach presented is that a sequential least squares estima-
tor is obtained for the class of problems considered. This
estimator could be implemented in real time. Experimental
results from several examples indicate that the proposed
estimation scheme is feasible.

The feasibility of using the estimated state, as pro-
duced by the sequential estimator, for control purposes is
then investigated. The problem considered is the following:

starting with arbitrary initial angular velocities on the



122

body axes of a space vehicle, synthesize control signals,

based on noisy measurements on one angular velocity, which
will force the three body angular velocities to zero. The
results of computer experiments indicate the possibility of
accomplishing angular velocity reduction in a space vehicle

using only one rate gyro.

5.2 Introduction

The sequential estimation of states and parameters in
noisy non-linear dynamical systems is of interest not only
in automatic control but also in other areas of engineering
where the system identification problem requires the process-
ing of large quantities of data.

The class of problems considered will be those in which
the dynamical behavior of the system is described by an or-
dinary differential equation. No statistical assumptions
are required concerning the nature of the input disturbances
or of the measurement errors. The absence of statistical
assumptions corresponds closely to the physical situation in
many practical problems, as the determination of valid statis-
tical data concerning disturbances is in itself a difficult

theoretical and practical problem.
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The criterion that will be used for estimation is the
classical least squares method. The motivation for using
this criterion is historic precedent, as a least squares
approach has been used explicitly and implicitly on many
estimation problems with success since the tine of Gauss.

If valid statistical data concerning the disturbances are
available then this approach will not necessarily be the
best one.

The usual classical approach to least squares estimation
leads to non-sequential estimation schemes. The basic ob-
jection to a non-sequential estimation scheme, when applied
to a dynamical system, is that each time additional output
observations are to be included, then the entire least squares
calculation must be repeated. In general, the time required
to perform this calculation increases with the number of
measurements.

The new feature of the approach presented is that a
sequential least squares estimator is obtained for the class
of problems considered; this estimator could be implemented
in real time.

In the formal derivation the minimization of the inte-~

gral of the weighted, squared, residual errors is converted
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to a Lagrange problem in the calculus of variations. The
Euler-Lagrange equations for this problem are written using

Pontryagin'’s maximum principle [21,24]. The sequential na-

ture of the estimation problem is then brought out by imbedding

the resulting two point boundary value problem (TPBVP) in a
larger class of TVBVP's using invariant imbedding techniques
[(29]. A non-linear partial differential equation results
from the imbedding. Using an approximation procedure the
sequential estiﬁator equations are derived.

The resulting estimator equations, except for an addi-
tional term, are precisely the equations obtained by Béllman,
Kagiwada, Kalaba and Sridhar [30] who consider the more re-
strictive problem in which'only observation errors are allowed.
The method of derivation here is quite different from the
one used in reference [30] which is inapplicable for the
problem cdnsidered in this chapter.

In the literature the usual approach to estimation prob-
lems of this type assumes that the disturbances are gaussian
white noise of known statistics. Under these assumptions
Bryson and Frazier [31] derive a TPBVP and Cox [32] derives

a somewhat similar set of estimator equations using dynamic

programming.

:
. * ’ - - - - - -
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A number of computer experiments were performed in order
to test the feasibility of the proposed sequential least
squares estimator. Experimental results are given for (1)
the problem of estimating the three angular velocities ?f a
rigid body rotating about its center of mass given noisy .
measurements on one angular velocity and (2) the problem of
estimating position, velocity and a time varying parameter
in a second order non-~-linear differential equation.

The feasibility of using the estimated angular velocity
in example (1) above to control the space vehicle so as to
reduce the angular velocities is then investigated. The re-
sults of computer experiments indicate the possibility of
accomplishing angular velocity reduction in a space vehicle

using only one rate gyro.

5.3 Problem Statement

The problem under consideration is that of estimating
state variables and parameters in noisy non-linear dynamical
systems. In this section the problem is defined for the
scalar case and a physical interpretation of the proposed
criterion fér estimation is presented. It is a simple matter
to generalize the results to the vector case; this is done

in Appendix F.
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Consider the class of systems defined by
x = g(t, x) + k(t, x) u (5.3.1)

where u represents an unknown input. The explicit inclusion
of t in the right hand side of equation (5.3.1) accounts for

all known inputs. Let the output observations be denoted by
y(t) = h(t, x) + (observation error) (5.3.2)

where the (observation error) term accounts for the fact that
the output observations are of limited precision. Using the
philosophy presented in the introduction, no statistical as-
sumptions are be!ﬁé made concerning the unknown input or the
observation error. The estimation problem is the following:
based upon output measurements y(t) in the interval 0 s t s T
estimate the current state x(T). A least squares criterion
will be used to estimate x(T). Using the usual least squares

terminology define the following residual errors

e (t) = y(t) - h(t, x(t)) (5.3.3)

x - g(t, x(t)) (5.3.4)

eg(t)

where x(t), 0 s t = T, represents a nominal trajectory. If

;(t) were the true trajectory of the system given by equation

»
y ) - - - - - -
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(5.3.1) then for no observation errors it would follow that
e, (t) = 0 and for no unknown inputs it would follow that
ey (t) = 0.

The problem of estimating x(T) in a least squares sense
reduces to minimizing with respect to';(tL 0O =t =T, the

usual functional

T -
j [e,'(t) + wit, %) ei(t)} at (5.3.5)
o]

where w(t, x) is a positive weighting factor. Let x(t).
0 £t =T, denote the minimizing function; the least squares
estimate of x(T) is then x(T).

The estimation of x(T) is then based on minimizing an

integral of the sum of the weighted, squared, residual er-

rors.

5.4 Reformulation of the Problem

It will be convenient to reformulate the problem. Sub-
stituting from equations (5.3.3) and (5.3.4) into (5.3.5)
and then minimizing the expression (5.3.5) with respect to

;(t), 0 £t £7T, is equivalent to minimizing

IT [ - nee. ;>)’+ wit, 0(x - g, ;))a] at
o

(5.4.1)
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with respect to ;(t), 0 =t £=T. Using equation (5.3.1) for

motivation, this in turn is equivalent to minimizing

T ?
[ [G-ne ) +ue, 2 ke, 0 7] ae

o

(5 4.2)

with respect to ;(t) and';(t), 0 £t 7T, subject to the

differential constraint
x =g(t, x) +k(t, x) u (5.4.3)

The minimization of the expression (5.4.2) with respect
to';(t) and ;(t). 0 st =T, subject tothe constraint given

by eguation (5.4.3) constitutes the reformulation of the

problen.

5.5 The Variational Problem

For the moment let the interval of observation, denoted
by T, be fixed. The minimization of the expression (5.4.2)
subject to equation (5.4.3) is then a Lagrange problem in
the calculus of variations. The Pontryagin maximum principle
(21,24 ] will be used to write the Buler-Lagrange equations

for this variational problem.
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Let
vit, x) = w(t, x) k®(t, %) (5.5.1)
and define the "pre-Hamiltonian" H(t, x, A, u) by
H(E, x. X, u) = (y - h(t, X))® + v(t, x)u *
+ Alg(t, x) +Xk(t, x) u) (5.5.2)

Setting'%% = 0, solving for ;(t, x, A) assuming

v(t,‘;)‘# 0. and substituting';(t,';, A) back into H leads
to the Hamiltonian H*(t, x*, \). The variable x* replaces
X to indicate that x* is the trajectory along which the max-

imum principle is satisfied. The Hamiltonian is then

H*(t, x*, A) = (y - h(t, x*))* + A g(t, x*)

(5.5.3)
R S
4 w(t, x*)
The Euler-Lagrange equations are then
v o QHY *
x a\ (t, x*, A)
(5.5.4)
y - .o *
A = At (t, x*, 2A)
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since T has been fixed, and x*(0) and x*(T) are free, the

transversality conditions yield

A(0) =0 A(T) =0 (5.5.5)

Eguations (5.5.4) with boundary conditions (5.5.5) is a
TPBVP. The solution of this TPBVP will yield the least
squares estimate of x(T), i.e., x*(T).

Now suppose that the observation interval is increased
to 0 £t £<T, where Ty > T. In order to obtain a least
squares estimate of x(T,) using all the data observed for
0 <t =T, it is necessary to solve equations (5.5.4) with

boundary conditions

A(0) =0 A(T,) =0 (5.5.6)

This is a different TPBVP than that described by equations
(5.5.4) with boundary conditions (5.5.5).

The sequential nature of the estimation problem will
now be emphasized. 1In the sequential problem the variable
T is regarded as an independent variable, the running time
variable. For each value of the independent time variable
T, in order to estimate the current state x(T) in a least

squares sense using all the observations in interval O to T,

1 ! ‘
‘ ) GhE GED EER BN OER OB NG D N D =
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it isnecessary to solve a TPBVP of the above type. The se-
quential nature of the estimation problem then leads natur-

ally to the use of invariant imbedding techniques [29].

5.6 The Invariant Imbedding Equations

In order to solve the sequential estimation problem it

is necessary to solve the TPBVP described by equations (5.5.4)

with boundary conditions

A(0) =0 A(T) =0 (5.6.1)

for all values of the variable T, the running time variable.
Using the techniques of invariant imbedding [29] replace

the boundary conditions (5.6.1) by the more general condi-

tions

A(0) =0 A(T) =C (5.6.2)

Let r(C, T) be the missing terminal condition on x* given
that x* and )\ satisfy the TPBVP described by equations (5.5.4)

with boundary conditions (5.6.2). It can be shown (Appendix

D] that r(C, T) satisfies

-394 Or QJH* _ OH*
ar ~ac ar (T T . C) =35 (T. r, C)  (5.6.3)
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The solution to the non=-linear partial differential
equation (5.6.3) with the proper boundary conditions on r
contains the solution to all TPBVP's consisting of equations
(5.5.4) with boundary conditions given by equations (5.6.2).
In order to solve the sequential least squares estimation

problem it is necessary to determine r(0, T) since A(T) = O.

5.7 The Sequential Estimator Results

The partial differential equation (5.6.3) may be trans-
formed approximately into an initial value problem by sub-
stituting r(C, T) = -P(T) C + x(T) and expanding about r (0, T)
retaining terms to first order in C. The motivation for this
approach is that only those solutions of equation (5.6.3) for
which C = 0 are of interest. Also the least squares estimate
of x(T). now denoted by X(T) to emphasize the sequential na-
ture of the problem, is r(0, T). The results [Appendix E]

are

g-"ré = g(T, %) + 2P(T) he(T, %) [y - h(T, %)]
Q - -~

d - ~
+ 2P 5= {ho (T, %) [y - h(T, k] )

2w(T, x)

» v '
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-~

where hi = %% (T, x)

The differential equations (5.7.1) are the principal
result; they describe a filter which operates in real time
on the observations to sequentially produce least squares
estimates of the current state.

Comparing the equation for P with that obtained by Bell-
man, Kagiwada, Kalaba and Sridhar (30] for the more restric-
tive problem which allows observation errors only, it is
interesting to note that the C;;?%T—§;> term is the only

modification necessary to account for unknown inputs.

The results for the vector case are given in Appendix F

5.8 Experimental Results - Estimation

a) Procedure

A number of controlled, computer experiments were
performed in order to test the feasibility of the proposed
sequential least squares estimator. Each experiment was
divided into two phases. In phase 1 the system trajectory
was generated by solving equations (5.3.1). In phase 2 the
output data from the system was corrupted with measurement
noise, i.e., y(t) from equation (5.3.2) was generated, and
finally the noisy observations were used as an input to the

sequential estimator as described by equations (5.7.1).
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The model used for the measurements was

y(t) = Py ry(t) - |x(t)| + x(t) + Pz ra(t) (5.8.1)

where x(t) the variable measured

y(t) the observed value of x(t)

ry(t), ra(t) for each t, statistically independent

random variables, uniformly distributed
between -1 and +1.

P, P3 - constants, used to adjust the relative
magnitude of the error.

An interpretation of the model for the measurements is
as follows: suppose the maximum magnitude of x(t) is in the
order of unity, then with P, = P3 = 0.1 the error model cor-
responds to measurements accurate, on the average, to ap-
proximately one significant figure. Therefore if the magni-
tude of x(t) is approximately known the relative accuracy
of the measurements may be controlled by adjusting P, and P;.

b) E le - tation Motion of a Rigid dy About
Its Center of Mass

The following question provides the physical moti-
vation for this example: 1Is it possible to sequentially
estimate the three angular velocities about the principal
body axis of a rotating body given noisy measurements on only

one angular velocity? The equations of motion are

* .
» . .
' O B B B B B B O OB B OO OB EO
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. I - I,
W = I, Wy + Wy (5.8.2)
. 13-11
W = T w; wy + uy
)

. I, - I3

Wy wg + ujz

£
o«
"

I,
where
w, = angular velocity about the ith principal axis
u, = disturbance torque/Ii for the ith principal axis
Ii = moment of inertia about the ith principal axis

Let
I, = 10 slug £t*, I, = 20 slug £t* and I, = 40 slug ft?
(i) Consider first the case when it is known that there are no
disturbance inputs acting on the system, i.e. Uy = uz = uy = 0
in equation (5.8.2). Using the results in Appendix F, equa-

tion (F.31) the sequential estimator equations for this ex-

ample become

w, =-263(33 +2P11(;1‘a-‘1)
g = 1.5 & &y + 2 Pay(@y - &y) (5.8.3)
Gy = =0.25 @y @ + 2Psy (@ - &y)
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P =

where

Figure 5

-2PHQH' P + g.
w

by

13

Y

23

33

1.5&s

L-o.zs&,

P+ P g
£

-

-2w3

-0.250,

= measured value of w, using the error model
given in equation (5.8.1), with P, = 0

and Py

= 0.1.

- denotes transpose

.1 displays the results for &k i

using initial conditions

@(0) =

P(0) =

.1

(5.8.4)

. ‘|
3 ' .
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The initial conditions for &3 reflect the physical sit-

uation, i.e., for @,(0) is used Zﬁ(o-)whereas zero is selected

.

for @s (0) and 4y (0) as no information is available. The on-
diagonal terms in P(0) reflect in some manner the confidence
one has in the initial values of &a.

ii) In the case of disturbance inputs to the system,
referring to Appendix F, let W(t, x) = % I where I = identity
matrix. Then, since k(t, X) = I, the only modification to
the sequential estimator eQuations (5.8.3) is to add the
identity matrix to the right hand side of the P equations.

Figure 5.2 displays the results for &ﬁ i=1, 2,3
with constant disturbance inputs u; = 0.005, ug = -0.005,

Uz = 0.005 acting on the system.

Figure 5.3 displays the results for &i i=1, 2,3

with random disturbance inputs acting on the system. The

model for the disturbance inputs was

ui(t) = 0.01 ri(t) i=1,2,3 (5.8.5)

where

1

ri(t) i=1, 2, 3 for each t, are statistically
independent random variables uniformly
distributed between -1 and +1.

- - - - . . ,
.
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While the disturbance inputs used in these two examples
may seem to be of low level, it has been determined experi-
mentally that properly applied inputs in the order of 0,05
on each axis will reduce the u&'s to zero in 15 to 20 seconds.

The estimates of all the “ﬁ's were within 5% of their
true values at the end of 34 seconds. Some estimates were
within 0.2% of their true values.

Comparing Pigures 5.3 and 5.2 with Figure 5.1 it is in-
teresting to note that the additional term in the P equa-
tions, which accounts for unknown inputs, resulted in the
state estimator "tracking" the angular velocities w, i=1,2,3
considerably earlier than in the case when this term was not
present. Due to this experimental evidence the additional
term in the P equations was retained for the remaining exam-

ples.

c) Example - Estimation of Position, Velocity and a
Time Varying Parameter

Since the method presented makes no distinction
between state variables and unknown parameters which may be
modeled by differential equations. the following example
is quite pertinent to the type of problems of interest to

JPL even though parameters are also being estimated here.



The system equations are

X, = X3

Xz = -2x%; - a(t)x;? - 3x3 + 5 sin (t) (5.8.6)

where

a(t) = 2¢0-1t (5.8.7)

and the output observations are

y(t) = observed value of x, (t) (5.8.8)

using the model given by equation (5.8.1) with P, = Pz = 0.1.
Suppose the form of a(t) is known but not its initial

value or "time constant", then a(t) may be modeled by

a(t) b a(t)

(5.8.9)

b

]
o

where the initial conditions on b and a(t) are unknown.

The sequential estimation problem is, based on y(t)
0=t =sT to estimaie X (T), x(T), a(T), and b(T) = b(0).
Define x3(t) = a(t) and x4 (t) = b. Using the results in

Appendix F, the estimator equations for this example become

. \
. ‘ l ) -
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X, =/;<a + 2Py (y - X;)
;(3 = -2;(; - ;Q;(;s - 3;(3 + 5 sin (t) + 2P3, (y - 5:1)
X3 = -XeXa + 2Pay(y - X;) (5.8.10)
2 S
Xe = 2P41(y - x3)
: = - .p " A.
P 2PHQH + gxP + ng + I
where
Q=1
P = [Pij] is a 4 X 4 matrix
1 0o o0 0
HOH' = 1, .
0 .
0 L ] [ ] [ ] - 0
[ 0 1 0 0
agi
94 = Y =|-2 -3%% 2 -3 -x,? 0
J
0 0 -Xy ~Xa
0 0o 0 0 |
e -l
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0
x(0) =1{o0
0
o]
- (5.8.11)
3 1 1 11
P(O0) =1]1 3 1 1
1 1 3 1
1 1 1 3

It is interesting to note that the estimator "tracks"
x; and x; considerably sooner than it "tracks" either a(t)
or b. Apparently the coupling between the X and P equations

compensates for the initially poor estimates on a(t) and b.

d) Example -~ Rotational Motion of a Rigid Body, Linear

Combination of Anqular Velocities Measured

The examples presented here are similar, with two
exceptions, to those in part (a).
The major difference is that here the output of the
system will be assumed to be a linear combination of the
three body angular velocities. Outputs of this type could

be obtained by using one rate gyro which is skewed with

s 3
. . 4
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respect to the three principal body axes. The motivation
for measuring a linear combination of the angular velocities
about the principal body axes, is that with measurements of

only one angular velocity about a principal axis there is

the untorqued case. The equations of motion in the untorqued

case are

€
>
]

C1 Wy Wy

3
H

Ca W ws (5.8.12)

Wy = C Wy Wy

where H i =1, 2, 3 are known constants. Let X;(t), Xa(t),
Xa (t) represent a solution of equations (5.8.12), i.e.
“ﬁ(t) = Xi(t) i=1, 2, 3, then X;(t), -Xz(t). -X3(t ) also
represents a solution of equations (5.8.12). Hence if only
the angular velocity w, (t) is measured it is not possible
in the untorqued case to distinguish between the above two
solutions. This ambiguity in sign does not exist if a linear
combination of the w; i =1, 2, 3 is measured.

The second difference is that the numbers used for the
principal body moments of inertia and initial conditions on
the body rates are comparable to the problems of interest to

JPL.

B
. ) - - - - - -
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The system equations are
. I, -~ I
Wy = _—f;-_— Wy
. I, -1,
. I, - I3
W = "E:‘__ Ws Wy
and the output is
(5.8.14)

Y = hjw; + haws + hws + (observation error)

where the model for the measurements is given by equation
(5.8.1). Let I, = 92 slug ft?, Iz = 113 slug ft°, I, = 63
slug ft®, and h; = hg = hy = 0.578. The values of the h 's
were arbitrarily selected so that each angular velocity about
a principal axis was weighted equally in the output. Using
the results in Appendix F, equation (F.31), the sequential

estimator equations for this example become
3
@, = 0.576 &» &,+2<Zplihi>- z

i=1

le = -0.283 @, &y + 2<i P, hi) .- 2
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3
Ws = -0.35 & &,+2<Vp.h>
i=]
é = - ' Py 1 - hd
2P HQR'P + gw P + Pgw + 0.002 I
where
Zz = Y - hlu‘.:l - ha&a - hg&}a
P = 3 X 3 matrix
Q = 1
i -~ -~ 1
0 0.576 wj, 0.576 wg
9% = . .
-0.283 wy 0 -0.283 w,
-0.35 g -0.35 , 0 ]

Figures 5.5 and 5.6 display the results for two different
sets of initial conditions for the system equations (5.8.13).
Also included on these graphs are the true output, the esti-
mated output, and some of the measured outputs. The measured
values are shown at ten second intervals in order to convey
some feeling for the type of measurement errors given by the
model used. 1In both of these examples the parameters used

for the noise model, given by equation (5.8.1), were P, = 0.1

»
.
' ' ‘ - - - - -
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and P; = 0.01. The initial conditions used for the estimator

equations were

@wo) = |o

(5.8.16)
0.03 0.01 0.01
P(0) = 0.01 0.03 0.01

0.01 0.01 0.03

The initial values for the estimates && i=1, 2,3
reflect the fact that since a linear combination of the an-
gular velocities is being measured, no information concern-

ing the individual velocities is available at time t = 0.

5.9 Control Usiny Estimated State

The above section has shown that the proposed estimation
scheme provides a feasible method of sequential estimation
of state variables in noisy non-linear dynamical systems.

The next question is then, is it possible to use the esti-
mated state variables for control purposes? Of interest, to
JPL, specifically: 1Is it possible to use the estimated angu-

lar velocities about the three body axes for the attitude
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control of a space vehicle? This section will consider the
feasibility of using the estimated angular velocities, as
produced by the non-linear state estimator, for rate reduc-
tion purposes. The motivation for the approach presented is
the desire to remove two rate gyros from a space vehicle
attitude control system.

The problem considered is then, that of using noisy
measurements on one angular velocity to sequentially esti-
mate all three angular velocities about the principal body
axes and then to use these estimated velocities for rate
reduction. Figure 5.7 displays the overall block diagram
of the system used for the initial feasibility studies.
Since the first portion of the overall control» scheme is con-
cerned with state variable estimation, the switches indicate
that at time t = T the controller is turned on and then the
estimated state is used for control purposes.

The controller selected for these experiments repre-
sents a "bang-bang" type of controller which could be physi-
cally realized by the use of on-off gas jets. Actually the
portion of the overall system contained within the dashed

lines is rather arbitrarily labeled the controller. The

controller could just as easily be thought of as the non-linear

N
. ' -I - - -
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state estimator plus the relays, as this system receives as
an input the measured output of the plant and processes this

data to produce signals which will control the plant.

5.10 Experimental Results - Control Using Estimated State

A number of computer experiments were performed in order

to test the feasibility of the pfoposed method for rate re-
duction in the épace vehicle attitude control problem. 1In
each experiment the non-linear state estimator was allowed
to run, without the controller, for 260 seconds, at which
time the controller was turned on.

The principal moments of inertia and acceleration con-
stants used were comparable to problems of interest to JPL.
The values for the principal moments of inertia were identi-
cal to those used in the state estimation examples (part d).
The acceleration constants used were 0.0005 rad/(sec)?® on
all three axes. Also. in all the experiments the initial
conditions for the estimator equations were the same as in
estimation - only experiments, i.e. eguations (5.8.16).

Figure 5.8 displays the results for the plant initial
conditions of w4 = Wz = wy = 50 milliradians/sec. The para-
meters used for the measurement model, given by equation

(5.8.1), were P; := 0.1 and Pz = 0.01.

] * M
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Figure 5.9 displays the results for the plant initial

conditions of w, = W = Uy 10 mrad/sec. The parameters
in the error model were P, = 0.1 and P; = 0.001l.
Figure 5.10 displays the results for the plant initial
conditions of wy = 100 mrad/sec, ws = ws = 50 mrad/sec.
The parameters in the error médel were P, = 0.1 and P = 0.0l.
Figures 5.11 and 5.12 display the results for the case

of a 5 percent error in the control torques. That is, for

t > T = 260 seconds the vehicle is being torqued at a dif-

velocities. To see the effects of the errors in the control
torques, these figures may be compared to Figures 5.8 and 5.9
respectively.

In all of these examples it can be seen that the pro-
posed control scheme does accomplish rate reduction. ' The
results from these feasibility studies indicate that it may
be possible to cbntrol the three angular velocities éf a

space vehicle using only one rate gyro.

5.11 Programs

Appendix J contains the listing of the programs which
were used to produce the experimental results concerning the

estimation and control of the angular velocities of a space

ferent rate than are the estimator equations for angular l
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vehicle. While no claim is made concerning the efficiency,
in terms of computation time, of these programs, they are |
working programs of some flexibility. A brief description
of the important parameters of the programs is also contained

in this appendix.

5.12 Conclusions and Future Work

A sequential least squares estimator has been formally
derived. The approximations made were necessary in order to
obtain the sequential estimator equations from the non-linear
partial differential equation of invariant imbedding. This
estimator could be implemented in real time.

In general, the question of observability of the system
with respect to the output has been ignored, i.e., consider-
ing just the noisless case for the moment, does y(t) for
0 £ t £ T uniquely define the state x(T)? The observability
question for non-linear systems has received little attention
in the technical literature. The sequential estimator pre-
sented in this chapter provides a tool for experimentally
studying the observability of specific systems.

Examples were presented which demonstrate that the
sequential least squares estimator proposed is feasible.

The examples of specific interest to JPL concerned the
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estimation of the three angular velocities about the princi-
pal axes of a rotating rigid body. These velocities were
estimated based on noisy measurements on only one angular
velocity. Examples were presented which demonstrate that
rate reduction based on the estimated angular velocities,
as produced by the sequential state estimator, is feasible.
Currently the following problems are being investigated:
(1) The physical interpretation of the’P equations in the
state estimator, i.e., how should the initial conditions P(0)
be selected and precisely what interpretation should be
given to P(t). (2) The sensitivity question as it applies
to the problem of interest to JPL, i.e., what happens to the
performance of the estimator in the case when the principal
moments of inertia are not known precisely, and can this

error in the moments of inertia be compensated for?

, . I I : - - -
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CHAPTER 6

MIN-MAX OPTIMIZATION

6.1 Summary

In this chapter, the use of a min-max criterion in the
solution of the specific optimal control problem is devel-~
oped. The use of the criterion in conjunction with an ap-
proach analogous to differential approximation is discussed,
and a method for solution of the problem using quasilinear-
ization and linear programming is given. Linear programming
and the simplex method are discussed briefly.

Several variations in approach to this problem are
pointed out and discussed, and examples are given. Future

work in this area is outlined.

6.2 Introduction

The method of differential approximation was developed
in Chapter 3 of this report. The use of this method requires
fitting one trajectory to another using a least-squares cri-
terion. It is mentioned in Chapter 3 that an alternative to

the use of the least-squares criterion for fitting the system
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trajectory to the optimal trajectory is the use of a cfite:-
jon which would minimize the maximum deviation between the
two trajectories. Such a criterion shall be called a “"min-
max" criterion.

A modification of the differential approximation pro-
cedure as presented in Chapter 3 which makes use of the
min-max criterion will be presented, along with a method
for solving the problem which utilizes the basic ideas of
quasilinearization [10], [Appendix B], and linear programming

(33.34].

6.3 Use of Min-Max Criterion in SOC Problems

In Chapter 3 a typical optimal control problem was
sﬁated, and several of the classical methods for solving
the problem were outlined. The limitations of these meth-
ods with regard to practical, realizable solutions were
pointed out, and these limitations were in turn regarded
as motivation for the SOC approach to -the solution of the
optimal control problem. Now, along with the approaches to
the SOC problem given in Chapter 3, an additional approach
will be presented.

consider that the plant that one wishes to control is

‘
. . N
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described by the differential equation
x = £(t, x, u) (6.3.1)

where X - n-dimensional state vector
u - scalar control input
At the initial time (taken to be zero) the plant is specified

to be in a state C, i.e.

x(0) = ¢ (6.3.2)

It is desired to find the input u = u(x, t) which will

minimize the performance index

T
I =j g(t, x, u) dt (6.3.3)
o

In (6.3.3), g is a scalar, non-negative function, and T is
the terminal time, which may be fixed or free.
In order to convert this into an SOC problem, consider

a controller of the form
u = h(b, x) (6.3.4)

where h is a scalar function of known form and b is the m-

dimensional vector of parameters whose values constitute
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the solution to the SOC problem. A restriction on the form
of h is that it be linear in the components of b. The rea-
son for this restriction will become apparent subsequently.
In general h of equation (6.3.4) need not explicitly depend
on all the components of x.

First it is necessary to find the optimum "open-loop"”
solution, u*(t). If T is fixed, this can be done by solving
the canonic equations of the problem with . appropriate boundary
conditions, usually by quasilinearization {10]. I1If T is
free, then some other method must be used, such as a gradient
method, as proposed in reference (6]. Having u*(t), one can
obtain Ef(t) the optimal trajectory, by integrating (6.3.1)
with initial conditions (6.3.2) and u*(t) as an input. How-
ever in general the latter step is unnecessary since any
method for determining u*(t) will also yield x*(t).

Now the problem is to choose b so that the trajectory
gs(t) obtained with the specific controller shall be fitted
to x*(t) in the min-max sense. A modification of the quasi-
linearization scheme can be used to accomplish this task.

First, since b is a constant,

(6.3.5)

o .
"
o

’
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Now one substitutes (6.3.4) into (6.3.1) and adjoins (6.3.5)

to the resulting equation. One then has

x = £(t, x, h(b, x))

(6.3.6)

b =0

with initial conditions x(0) = C and no given conditions on

b. The object is to find a solution of (6.3.6) subject to

(6.3.2) such that the value-obtained for b causes x(t) to
be fitted to x*(t) in the min-max sense.

As in the quasilinearization solution to boundary-value
problems, one can find a solution to this problem by forming
a sequence of linear problems, the solutions to which will
converge to the solution of (6.3.6) subject to the specified
initial conditions.

Rewrite (6.3.6) as follows:

y = £1(t, y) (6.3.7)
X
where Yy =
L P
-_§7
£H =
9

and £, are (n+m)-dimensional vectors

I



168

Proceeding as in quasilirearization, one forms the "guasi-

linear” equations [Appendix B]
Vo1 "B pm) v e T (6.3.8)

Some of the boundary conditions on (6.3.8) are

(y,(0), ya(0), ..., yn(0)§Nl = (Cy., Cg. «eo. cn)

(6.3.9)

If the k-th approximation to the solution of (6.3.7),

Y

K is known. a solution to (6.3.8) may be obtained in the

form

Y18 =g ,(8) K, + B () (6.3.10)

fundamental matrix solution cof the
homogeneous part of equation (6.3.8)
made unigque by chocsing ¢h+l(0) = identity

where ¢i+l(t)

matrix
Kk+L = vector of initial conditions on Xk+l
2k+l(t) = a particular solution of the inhomogen-

eous equation (6.3.8) made unique by
choosing 2k+l(0) = 0

At this point one departs from the usual quasilineariza-

tion procedure, which would involve constructing and solving

.
‘l
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a system of linear algebraic equations in the components of
K. Instead, one constructs a linear programming [33,34]
problem and solves it. The solution satisfies the min-max
criterion and gives the appropriate values of b. This

process is iterated until convergence is obtained.

6.4 Linear Proqramming [33,34]

It is advantageous at this point to digress from the
problem at hand in order to give a brief explanation of
linear programming. The reader who is already familiar with
linear programming can skip this section and proceed directly
to section 6.5.

Consider the following problem. One has a system in
which there are n variables, Xyr X3/ oo, xn. The proper-
ties of the system are such that the n variables are related
by m linear relations, which might be equalities or inequal-
ities. Also associated with the system is a quantity z
which represents some desired goal or objective; z should
be expressed as a linear cdmbination 0f the variables X,
i=1,2, ..., n. It is desired that z be minimized (or
maximized) by a proper choice of the variables X, .

As an illustration, suppose that the system under con-

sideration is a clothing store, and that the X, represent
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the amounts of various articles of clothing that the store
manager will stock for sale in the store, Let z represent
the total net profit, and assume that various linear rela-
tions are known (either empirically or otherwise) between
the amounts of the various items purchased and the amounts
that can be stored, the number of items that will be lost to
shoplifters, damage in transit, etc., and the number of each
item that can be expected to be sold. The problem here
would be to pick the X, such that all the relations cited
above (constraints) would be satisfied and z, the profit,
would be maximized.

In more precise mathematical terms, the problem could

be stated in the following way. Given the objective form

n
z = Z a. X, i=1,2, .... n (6.4.1)

and the constraints

n

Z b.. x. € c. j =1, 2, «o., m (6.4.2)
: ij Ti 3

i=]

where ai, bij' and cj are constants for all i and j, find

the values of the X4 which maximize (6.4.1) subject to the

constraints (6.4.2).
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The foregoing is a statement of the general linear pro-
gramming problem. Of several methods available for solving
the problem, the most popular and most generally used is the
simplex method. 1In order to apply this method, certain
restrictions must be applied to the problem, viz., the var-
iables X, must be non-negative, the constraints must be
linear equalities, and the dbjective form must be minimized
by the optimum solution. This constitutes the "standard form*
of the linear programming problem. |

It is an easy matter to transform the general problem
of (6.4.1) and (6.4.2) into the more restricted form men-
tioned above. 1In order to insure the non-negativity of the
variables, one takes advantage of the fact that any number
can be written as the difference of two non-negative numbers.
For instance, if the variable Xy in the original formulation
of a problem has no restrictions on its sign, one makes the

substitution
X, = X, - X' (6.4.3)
where x, 20 , x, 20

A similar substitution is made for all variables whose non-

negativity is not assured. Note that every such substitution
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increases the number of variables in the linear programming
problem by one.

1f the original formulation of the problem contains
inequality constraints, these may be converted to equality
constraints by the introduction of non-negative “slack
variables."

For example, suppose that the following constraints

arise in a linear programming problem:

byi1x; + b‘g)(a S ¢

(6.4.4)
bz,xl + baaxa 2 Cg

To convert (6.4.4) to equalities, the non-negative variables

x3 and x, would be introduced as follows:

51

biixy + byaXxas + X3
' (6.4.5)

bgi1X; + baaxa - X¢ Ca

Thus the inequalities become equalities. The variables X,
and x, are called "slack variables" because they "take up
the slack" in the inequalities. Again note that each slack
variable introduced increases the number of variables to be

considered.

[
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The initial formulation of the linear programming prob-
lem may be .such that the objective form is to be maximized.
I1f such is the case then a change is necessary in order
that the problem be in standard form. To make this change,
one minimizes the negative of the original objective‘form,
which is to say that maximizing z is equivalent to minimizing
-Z.

Thus it is seen that any linear programming problem
can be put in standard form. The emphasis is placed on the
standard form because it is necessary that a linear programming
problem be in this form before the simplex method can be
applied. A concise statement of the problem in standard
form will now be given: Find the values of non-negative
variables xg which minimize the value of a linear form in the
variables, subject to given linear equality constraints.

When the problem/is put in standard form, the simplex
method can be utilized to obtain the solution. An excellent

presentation of the simplex method is given in Reference [{33].

6.5 The Linear Programming Problem

To illustrate the formation of the linear programming
problem mentioned previously, consider the following simpli-

fied situation. Suppose it is desired to fit xls(t), the



174

*
first component of Yyl of (6.3.10) to x;(t), the corres-
ponding component of 5*(;), in the min-max sense. From
(6.3.10), dropping the subscript k+l for the sake of sim-

plicity, one can write

n-+m
x, (t) = Z ¢ 5%y + P (6.5.1)
j=1
where wl,j = j-th element of first row of &
kj = j-th component of K
P, = first component of P

A numerical solution to this problem requires that

*
xls(t) be fitted to a finite number of points on x, (t).
*
Suppose that one has { points on Xy, corresponding to 4

different instants of time, i.e.,

*
X (€)= d; i1, 2, ve.. 4 (6.5.2)

From (6.5.1) one can write
n+m
x g(t) = Z 0 (&) Ky ¥ Palty) (6.5.3)
J=1

The deviation between the two curves at each time ti is

*
Xx(ti) - X (ti). Let variables a, and 31 be introduced

1s
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such that
2 =
@, 0 ' ‘i 2 0, i 1. 2, ..., ¢ (6.5.4)
Now one may write the deviations as
*
Xu(tg) = %, (8) = a, - B8,
or (6.5.5)

Note that the first n components of K are the initial con-
ditions on x, which are known; the remaining m components
are the components of b, which are to be found. Since the

*
deviation between x, and x, may be either positive or

1s
negative, one writes it as the difference of two non-negative
variables, as in (6.5.5): the ai and ﬂi will be variables

in the linear programming problem and are required to be
non-negative,.

As the next step, introduce non-negative variables gz,

P.

i and qi such that
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(6.5.6)

i=l' 2: e e o 1

Also, since non-negative variables are required, and gener-
ally one has no a priori knowledge of the signs of the com-
ponents of b, which are the last m components of K, it is

necessary to make the following substitution

k., = k.,' - k_" (6.5.7)
J J J

j = n+ll n+21 e s @ n+m

From (6.5.7), (6.5.5), and (6.5.6), one has 34 equa-
tions in the (44 + 2m + 1) variables k.', k.", a., 2., P..
j j i i i
q; - and z (3 = n+l, n+2, ..., n+m ; i =1, 2, ..., 4).
Let z be eliminated from all but one of the equations, by
standard pivoting operations [33].
One now has (34~1) equations in (44+2m) variables and

z expressed as a linear combination of the variables. Notice

that the equations are necessarily linear because of the

»
. . . .
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quasilinearization-type approach to the problem. This fits
the standard form of the linear programming problem with z
being the objective form that is to be minimized. Minimiza-
tion of z will cause the maximum deviation between x: and
X1 to be minimized.

The preceding formulation is somewhat cumbersome, as
it involves more variables and equations than are actually
necessary to solve the problem. Also, it is difficult to
prove figorously that in general, the maximum deviation is
minimized when z is minimized, even though the examples show
that this does occur. An alternate formulation is given,.in
which fewer variables and equations are involved, and the
satisfaction of the min-max criterion by the solution is
obvious.

*

Let the magnitude of the deviation between x, and X

at time t. be 6., i.e,
i i

*
[x.(t.) - x, ()] = 8.
* ls™d (6.5.8)

Relation (6.5.8) can be replaced by the following two rela-

¢

tions:

.
B . * .
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*
¥ (ty) - x; (&) =6y

(6.5.9)
*
- S -
xp (t5) = x; (%) 2 =84
A = l, 2: sy {'
Now introduce the non-negative variable z such that
z 2 6. . i = lk' 2' .o e 0 L (605-10)

b

Using (6.5.10), one can eliminate the bi from (6.5.9), ob-

taining

xl*(ti) - xls(ti) sz
(6.5.11)

As in the previous formulation, it is necessary to make the
substitution given by (6.5.7), since one generally has no

a priori knowledge of the signs of the components of b. Now
let the non-negative variables Py and qQ; be introduced such

that

i
N

*
x;(ti) - xls(ti) t Py
(6.5.12)

*
X, (ti) - xls(ti) - qi -2

i = lp 2' * e 0 L

A
. . ’ . .
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If z is eliminated from all but one of the equations (6.5.12),
the result is (24-1) equations in the (24+2m) variables P,

q; - kj', kj" (i =1, 2, ..., 4; 3 = n+l, n+2, ..., n+m), with
z expressed as a linear combination of the variables. This

is now a linear programming problem with z being the objec-
tive form that is to be minimized. From (6.5.9) and (6.5.10),
the minimization of z will cause the maximum deviation to be
minimized. Note that this formulation involves fewer equa-
tions and fewer variables than the first formulation.

It is not difficult to see that the size of the linear
programming problem can get quite large in a solution of the
type just described. For example, if one wanted to obtain
values for two parameters by obtaining a min-max fit to
twenty points, the linear programming problem would involve
thirty-nine equations in forty-four variables using the
second- formulation. As the number of observations or para-
meters increases, the size of the linear programming problem
increases. It is obvious that the amount of available storage
in the computer places an upper limit on the size of the
problem that can be considered.

One should be aware that the example cited above for

purposes of illustration of the method of solution is greatly
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simplified. For this procedure to be analogous to the dif-
ferential approximation procedure of Chapter 3, it would be
necessary to fit simultaneously all components of the state

vector (x X xns) to the corresponding components

1s’ “2s’ "°°!

of the optimum solution x*(t) in the min-max sense.

6.6 Examples

Examples 6.1:

The technique outlined above was used to solve a spe-
cific optimal control problem. The plant considered was

described by the differential equations
Xy = X2
(6.6.1)
Xs = =3X; = 2%, + u .
The initial conditions were
X1 (0) = —5.0

X, (0) = =5.0

The performance index which was to be minimized was

1
I (x,2 + x2° + u®) dt (6.6.2)
0]
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The solution of (6.6.1) which minimizes (6.6.2) with the
given initial conditions was found using quasilinearization.

The points to be used for the min-max fit were arbi-
trarily chosen at 0.l-second intervals on x,*, beginning at
t = 0.1 sec. For this particular problem, five points were
used. The controller used was of the form u = bx, .

Convergence was obtained in three iterations, and the
value of b was found to be -0.0247079.

The results are graphically shown in Figures 6.1 and
6.2. In Figure 6.1, xls(t) and x;*(t) are plotted. It can
be seen that the two curves are quite close over the range
used for the min-max fit and are somewhat divergent over the
remainder of the time considered. The situation is similar
for the derivative, xz, which is shown in Figure 6.2.

Obviously, better agreement between X and x;* could
be obtained if more points were used for the min-max fit,
This is done in the next example,

Example 6.2

Thé problem is the same as was considered in the pre-
vious example, except that ten points on X, * were used for
the min-max fit. The points were taken at 0.l-second in-

tervals, beginning at t = 0.1 sec. The value of b obtained
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was -0.247892. Convergence occurred in three iterations.
Results are shown in Figures 6.3 and 6.4. As was

expected, the agreement between Xx and x;* was much better

1ls
than in the previous example; this is shown in Figure 6.3.
Similarly, the derivative xzsvis in much better agreement
with x3* then in the previous example, as may be seen in
Figure 6.4. The program used for example 6.2 is given in
Appendix K.

In both the examples given above, better agreement
between the specific trajectory (xls, Xzs) and the optimum
trajectory (x,*, X3*) would have been obtained if a min-
max fit had been performed simultaneously on both x, and
Xg. As has been stated previously, this procedure would be
necessary to make the min-max procedure analogous to the

differential approximation procedure of Chapter 3 of this

report.

6.7 Conclusions and Future Work

Several questions concerning the use of the min-max
criterion in the solution of the SOC problem bear investi-
gating. For instance, can satisfactory solutions to the SOC
problem be obtained by performing min-max fits on selected

components of the state vector rather than on all components

. .
. . r .
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of the state vector? 1f so, which components should be
selected? The examples given in the preceding section show
that for the particular system considered, performing the
min-max f£it on one component provided a reasonably good fii
of the second component. Another cuestion which may be asked
is the following. Rather than fit the components of the
state vector to the respective components of the optimum
state vector, can satisfactory and mcaningful results be
obtained by fitting the assumed form of the input, h(b, x)

to the optimum control function u*(t)?

It is intended that the answers to these guesticns he
sought through a series of experiments conducted on the
digital computer. Also, it is deemed very important to
discover ways in which the approach to the SOC problem
developed in this chapter complements the other approaches
mentioned elsewhere in this report. The min-max apprbach

is certainly not considered to be a replacement for the other

approaches.

0

f -
-

.
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CHAPTER 7
CONCLUSIONS
The material presented in this report is based on inves-

tigations which appear to hold considerable promise as far
as the solution of the acguisition problem of a space vehicle
is concerned. Much futher research is warranted before any
strong claims can be made about the efficacy of using any of
the techniques outlined here for actual design of the neces-

sary controllers.

The reader will notice a certain amount of "disjointness"

in the presentation in this report. This is essentially due

to the many-pronged attack being made at Purdue in the effort
of attempting to use optimal control theory to design prac-
tical and meaningful feedback controllers for the space vehicle.
No doubt some of the techniques will prove to be barren while,
hopefully, some will bear fruit.

The basic philosophy of the investigations is "digital
experimentation” i. e. using the digital computer to run con-
trolled experiments (principle of feedback in experimentation)
in order to be able to deduce some properties of the structure

of the solutions that one can expect in trying to solve the
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nonclassical types of problems encountered in controlling

systems in a near optimal fashion based on partial information.

v
) ) v - - - -




1)
2)

3)

4)
5)

6)

7)
8)

9)
10)
11)

12)

190

REFERENCES

Goldstein, H., Classical Mechanics, Chap. 5.Addison-
Wesley Publishing Co., Inc., Reading, Mass, 1950,

Eckman, P. K., JPL Guidance and Control Technical Memo
No. 4, Sec. 24, Feb. 10, 1960.

Bellman, R., R. Kalaba, and R. Sridhar, "Adaptive Control
via Quasilinearization and Differential Approximation,"
The RAND Corporation, Research Memorandum RM-3928-PR,
Nov. 1963.

Gleason, A., "A Search Problem on the n-cube," Proc.
Symposia in Appl. Math., vol. 10, 1960.

Bellman, R., Dynamic Programming, Princetion University
Press, Prinction, N. J., 1957.

Kelly, H. J., "Method of Gradients,” in G. Leitmann (ed.),
Optimization Techniques with Applications to Aerospace
Systems,ch.6, Academic Press, New York, N. Y., 1962,

Wilde, D. J., Optimum Seeking Methods, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1964

Feldbaum, A. A., "Automatic Optimalizer," Automation and
Remote Control, vol. 19, no. 8, 1958.

Bellman, R., H. Kagiwada, and R. Kalaba, "A Computational
Procedure for Optimal System Design and Utilization,"
Proc. Nat. Acad. Sci., U. S. A., vol. 48, pp. 1524-1528,1962.

Kalaba, R., "On Nonlinear Differential Equations, The
Maximum Operation, and Monotone Convergence," J. Math. and
Mech., vol. 8, pp. 519-574, 1959.

Fox, L., Numerical Solution of Ordinary and Partial Dif-
ferential Equations, Addison-Wesley Publishing Co., Inc.,

Reading, Mass., 1962,

Bellman, R., Perturbation Techniques in Mathematics; Physics,
and Engineering, Holt, Rinehart and Winston, New York, N. Y.

1964.



191

13)

14)

15)

16)

17)

18)

‘19)

20)

.21)

22)

23)

Bellman, R., R. Kalaba, and G. M. Wing, "Invariant Imbed-
ding and the Reduction of Two-Point Boundary Value Problems
to Initial Value Problems," Proc. Nat. Acad. Sci., U. S. A.
vol. 46, 1960.

Bellman, R., H. Kagiwada, and R. Kalaba, "Numerical
Studies of a Two-Point Nonlinear Boundary Value Problem
Using Dynamic Programming, Invariant Imbedding, ancd
Quasilinearization,"” The RAND Corporation, Reasearch Mem-
orandum RM-4069-PR, March, 1964.

Bellman, R., and S. E. Dreyfus, Applied Dynamic Program-
ming, Princeton University Press, Princton, N. J., 1962.

Courant, R., and D. Hilbert, Methods of Mathematical
Physics, vnl. I, Interscience Publishers, Inc., New York,
N. Ycl 19530

Bliss, G. A., Lectures on the Calculus of Variations,
The University of Chicago Press, Chicago, Ill., 1946.

Bellman, R., Adaptive Control Processes: A Guided Tour,
Princeton University Press, Princetion, N. J., 1961.

Busnaw, D. W., "Differential Equations with Discontinous
Forcing Term," Report 469, Experimental Towing Tank,
Stevens Institute of Technology, Hoboken, N. J., Jan. 1953.

Kalman, R. E., and R. W. Koepcke, "Optimum Synthesis of
Linear Sampling Control Systems Using Generalized Perfor-
mance Indexes," Trans. ASME, vol. 80, pp. 1820-1826,1958,

Berkovitz, L. D., "Variational Methods in Problems of
Control and Programming," J. Math. Anal. and Appl., vol. 3,
no. 1, Aug. 1961, pp. 145-169.

Bellman, R.,"Successive Approximations and Computer
Storage Problems in Ordinary Differential Equations,”
Comm. ACM, vol. 4, no. 5, May 1961, pp. 222-223.

Bellman, R., R. Kalaba, and B. Kotkin, "Differential
Approximation Applied to the Solution of

Convolution Equation," The RAND Corporation, Research
Memorandum RM-3601-NI1k, May 1963.




1

-

* f
€ ‘ .

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

192

Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze,
and E. F. Mishchenko, The Mathematical Theory of Optimal

Processes, Interscience Publishers, New York, N. Y., 1962.

Bryson, A. E., S. E. Dreyfus, and W. E. Denham, "Optimal
Programming Problem with Inequality Constraints: Necessary
Conditions for Extremal Solutions,” AIAA Journal, Nov. 1963.

Beckwith. R. E., "Analytic and Computational Aspects of
Dynamic Programming Processes of High Dimension," Ph. D,
Thesis, Purdue University, Lafayette, Indiana, 1959.

Unger, P., and H. Rubin, "Motion Under a Strong Restraining
Force," Comm, in Pure and Appl. Math., New York University,
1955.

Katz, S. "Best Operating Points for Staged Systems,"
Industrial Engineering and Chemistry Fundamentals, vol. 1,
no. 4, Nov., 1962.

Bellman, R., R. Kalaba, and R. Sridhar, "Sensitivity
Analysis and Invariant Imbedding," The RAND Corporation,
Research Memorandum RM-4039-PR, March 1964.

Bellman, R., H. Kagiwada, R. Kalaba, and R. Srldhar,
Invariant Imbedding and Non-Linear Filtering Theory,"
The RAND Corporation, Research Memorandum RM-4374-Pr,
Dec. 1964.

Bryson, A. E., and Frazier, M., "Smoothing for Linear
and Nonlinear Dynamic Systems,” Proc. Of the Optimum
Systems Synthesis Conference, Wright-Patterson AFB, Ohio,
AST-TDR-63-119, Sept. 1962.

Cox, H., "Estimation of State Variables Via Dynamic Pro-
gramming," Pre-Prints of Technical Papers, Fifth JACC,
June, 1964, pp. 376-38l1.

Dantzig, G. B., Linear Programming and Extensions,
Princeton University press, Princeton, N. J., 1963.

Kalaba, R., "Linear Programming,” The RAND Corporation,



i
N . » .

193

APPENDIX A

OPTIMAL CONTROL SYSTEMS

A.1 Introduction

The analysis and design of control systems have rellied
heavily in the past on empirical methods such as Nyqulst
diagrams, Bode plots, Root loci, etc. These employ linear-
izea models and provide the designer with gualitative infor-
mation regarding the effect of the controller (equalizer)
on the response of the system.,

More recently, attempts have been made in the automatic
control literature to develop analytical methods for analvsis
and design of control systems. Several of thess attempts
have focused attention on the possibility of using methads
from the calculus of variations in designing control systems,

Briefly, optimal control theory is concerned with «
variational formulation of automatic control problems and
the attempt to solve the resulting problem using methods
from the calculus of variations. Undoubtedly the number of
significant engineering control problems solved to date using
optimal control theory is small. However, the methods hold

sO0 much promise that they sceem now to warrant serious study
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In this presentation, no special attention will be paid
to mathematical rigor since rigorous justification of each
and every step in the derivations will obscure the main

philosophy of the methods.* The presentations will rely on

the method of dynamic p;:ocxrammi.na de\!eloped by Rellman rather

o T T TT T -

than the more usual calculus of variations.** This approach
permits a greater simplicity in derivations with a slight
sacrifice in rigor.

A Typical Optimal Control Problem

A typical optimal control problem is the following:
The plant or object to be controlled is described by a vector

differential equation of the form

x = £(t, x, ) (A.1.1)

where x is a n-vector, (x,, ..., Xn) called the state vector
of the plant and the components X, i=11, 2, ..., n are
called the state variables. x(t) is the state of the plant

at time t. u is a m-vector (u,, ..., um) and is called the

*The spirit of the derivations and discussion in this
presentation are along the lines of Chapter V of [15].

**The reader uninitiated in the methods of Calculus of
Variations will find it worthwhile to refer to the excellent
discussion in Chapter IV of [16]. For an advanced and rigor-
ous discussion of the classical Calculus of Variations refer

to [17]). For additional information on dynamic programming
methods, refer to [5], [18].

: ‘ ‘ ' ' - - -
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control vector of the plant. The components ui(t), i=1,2,...,m

are called control functions. £ is a n-vector (fl, cees fn).

The fi' i=1, 2, ..., n are assumed toO possess continuous

first partial derivatives with respect to all their arguments.
The control functions may be either unconstrained or

may be required to fall within an allowable range of values;

typically u(t) may be required to satisfy the inequality

k,. S'ui(t) < k i=1,2....,m (A.1.2)

1i 2i’
The general constraint on u(t) (an example of which is
(A.1.2)) will be symbolically denoted by u ¢ { where {} is a
suitably defined set.
In most applications the ui(t) are required to be at -
least piecewise continuous thus excluding, for example, im-
pulse control.

The situation is summarized by the statement that if the

state x is given at some.initial instant in the form

x(t) = CJ (A.1.3)

and the control u(7T) given for to S T < t, then the state
x(t) is determined uniquely. This assumption implies for
example that Eq. (A.l.1l) cannot be a delay-differential
equation.

The present theory assumes that
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1) the plant is completely controllable, a condi-
tion that is i1lather difficult to establish in
the case of nonlinear time-varying plants;

2) all the state variables are available for meas-
urement; and

3) that disturbances of any kind are negligible.

Such assumptions can seldom be justified in practice because
either

a) some of the state variables are not accessible for

measurement, or

b) some of the state variables that can be measured are

contaminated with noise, or

c) both of the above reasons.

Nevertheless one can still utilize the results of op-
timal control theory by either building the best possible
estimator in the case of noise-corrupted state variables or
obtaining by linear filters (equalizers) the best possible
approximate values of the state variables that cannot be

measured; an example of this is shown in Fig. A.l.

u ki X ko X| u_l ki ko X
S S s2
X
= S e
ko(l+ Ts)

T as small as possible. T > O
FIGURE A.1

. . . N
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The control problem is to find u(t) such that a given

functional of x(t) and u(t) (the index of performance or

return function) is minimized. The present theory allows

*

i
.
v ‘ -

indices to take the form

T
L (@ =] gi(t, x(t), u(t)) de + h(T, x(T)) (A.1.4)
t
o
In equation (A.l1.4) g, and h are scalar valyed functions
of their arguments and are assumed to possess continuous first
partial derivatives with respect to all their arguments. The

terminal time T may be fixed or free; in general the terminal

state x(T) will be restricted to a given region of the state
space.

The right hand side of equation (A.l.4) consists of two
parts which may be 1ntuitively interpreted as consisting of
(1) a part which allows for costs which accumulate over the
entire duration of the process and (2) a part which allows
for costs incurred due to deviations from desired states
when the process terminates.

A control u*(t), to < t < T* for which I, (u) is a min-
imum (subject to (A.1l.1), (A.l.2) and initial and terminal
conditions on the state of the system) is called optimal;

the corresponding state trajectory x*(t), to St £T* is
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called anoptimal trajectory. Here T* = T if the terminal time
is fixed and T* is equal to that value of T which minimizes

(A.1.4).

In most practical applications the choice of the actual
performance index is not obvious. Considerable physical
insight into the actual process to be controlled is necessary
before a meaningful and acceptable performance index can be
determined. The mathematical theory does not aid in picking
a suitable performance index. This is where engineering
experience comes to the fore. The minimization of a certain
performance index may yield a satisfactory system for a
particular plant to be controlled, whereas the same perform-
ance index applied to design an optimum controller for a
different plant may yield a considerably different final
system.

For the processes where meaningful performance indices
cannot be obtained in a form suitable for application of
optimal control theory based upon engineering experience,
considerable research effort is currently reported on optimi-
zation of control systems using several performance indices.
While the research may eventually provide the answer on how

to choose the most meaningful performance index for a given

S . .
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control application, at the present state of the art one
still has to make an arbitrary choice of a performance index
and use it as a design tool.

The performance index (A.l.4) can be rewritten in the

form
T dh 1
L () = jt [o1 (e, x(e), ute)) + S (v, x(0)) ! at
o]
+ h(to, 5(to)) . (A.1.5)
= Ig(u) + h(to, g(to)) (A.1.6)
where
T
Ig(u) =f g(t, x(t), u(t)) dt (A.1.7)
tO
and

gle, x(6). u(t)) = g (t, x(£). u(e)) + Tt, x(£)
(A.1.8)

Since for the optimization problems to be considered
here, the initial time tQ and initial state §(to) are fixed,
h(to'-é(to)) is a constanﬁ in the right hand side of (A.1.6).
Hence minimizing I, (u) is equivalent to minimizing I;(u),
i.e., the same optimal control u¥*(t) will result when mini-
mizing either functional. Henceforth it will be assumed

ce index to be minimized is of the form

that the pérforman
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(R.1.7).

In the following section, a basic partial differential
egquation associated with the optimization problem will be
derived. This equation is called the functional equation of
dynamic programming.

The type of problem considered in this section is often

referred to in the literature as the regulator problem.

A.2 The Partial Differential Equation of Dynamic Programming

A basic partial differential equation associated with
the optimization problem will be derived next. To do this,
the method of invariant imbedding will be used. The under-
lying idea for invariant imbedding is the following. Faced
with the problem of determining certain properties of one
particular process, one may attempt to do so by considering
that one process in isolation. However, it is often profit-
able and simpler to consider a whole family of processes of
which the original process is a member and try to interconnect
the properties of neighboring processes. This is invariant
imbedding. Many structural properties of the given process
can be determined using this technique.

The root locus method is an example of a technigue which
may be interpreted in terms of invariant imbedding. Often one

is interested in determining the location of the closed loop

. . ~
. . .




. ¢ .
H . B

201

poles of a particular fixed value of open loop gain. This

problem may be imbedded in a general class of problems in
which the open loop.gain may be a variable and the closed
loop pole locations may now be desired. The solution to the
general problem will yield the solution to the original prob-
lem. One method of solving the general problem is of course,
the root locus method.

For example, instead of considering the specific optimi-
zation problem outlined in the previous section, consider
the following more general problem. In this derivation it
will be assumed that the terminal time T is fixed.

The plant is still described by eguation (A.1.1). How-

ever the "initial" state of the plant at time 7T is given by

xi(r) = Ci i=1, 2, ..., n (A.2.1)

where - ® < Ci < =,
It is desired to choose u(t), 7T s t s T such that a

performance index of the form
T
I(u) =J' g(t, x, u) dt (A.2.2)
T

is minimized.
In equation (A.2.2)

- <7 sT
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Notice that the original problem has been "imbedded" in
a general class of problems. The special case of this general
class when T = to and C = go reduces to the original optimi-
zation problem.

Since the minimum value of the performance index depends
on the initial state C and the starting instant 7, define

the "return function" or "value function" J(C, T) as

T
J(C, T) =  Min J‘ g(t, x, u) dt (A.2.3)
u(t) e & 1

subject to the differential constraint (A.l.l) for a process
starting at time 7 with initial state C. If constraints of
the form (A.1l.2) are specified, the u(t) which minimizes the
integral is required to satisfy these constraints. This will
be symbolically denoted by u(t) € Q.

To proceed further, it is necessary to use the principle
of optimality due to Bellman. It is stated as follows:

The Principle of Optimality. An optimal policy has the
property that whatever the initial state and initial decisions
are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

The principle of optimality may be viewed as a means

for obtaining the optimal "policy" for a "multi-stage decision

process."

s . y .
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Hence, to use the principle of optimality in the problem
of interest here, the optimization problem should be reform-
ulated as a multi-stage decision process. This can be done
as follows.

Rewrite equation (A.2.3) as

T+A
J(C, T) = Min FJ g(t, x, uv) dt + JT g(t, x, u)dt

-

u(t)efd T T+A
T St sT

(A.2.4)

The choice of the control function (or decision) u(t) in the
interval T £ t £ T so as to minimize the quantity in the
braces in the right handlside of (A.2.4) may be viewed as a
choice of u(t) in the first stage 7 s t > T + & énd the
choice of u(t) over the remaining stages 7 + A < t < T,

From the principle of optimality, whatever the choice
of u(t) in the first stage, the decision u(t), 7 + A<t s T
must be optimal with regard to the state resulting from the
first decision.

Now for the arbitrary decision u(t), 7 st s 74 A
for a system in state x(7) = C, the state at time (T + A)
can be determined from equation (A.l.1). Denoting this state

by x(7 + &), equation (A.l.1) yields
X(t +4) =C+ £(r, C, u(r)) - &+ 0(4&%) (A.2.5)

for & sufficiently small.
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In equation (A.2.5), 0(A®) consists of terms which have

the property

Lim 0(a%) _
Amo a =0 (A.2.6)

An optimal choice of u(t), 7 + A< t s T will yield
T

Min g(t, x, u)dt = J(x(r+4), (7+4)) (A.2.7)
u(t)e Q@ “"7+A

T+4< t =T
for a plant which at time (7 + A) is in the state given by
equation (A.2.5).
From equations (A.2.4) and (A.2.7) and the principle

of optimality

T+A .
J(C, T) = Min [ | ett, x, wat + I(x(1+4), (T+a)) ]
u(t) € O T
T <t T + A (A.2.8)
Now
T+4
f g(t, x, wdt = g(r, €, u(r)) 4 + 0(&%) (A.2.9)
T

Also, using equation (A.2.5)

J(x(t + A), T+ 4) =J(C+ £(r, C, u(r))-a+ 0(a%), 7 + 4)

(A.2.10)




‘
. . ‘ «
.

|

. product of two vectors and V

205

Expanding the right hand side of equation (A.2.10) about

(€, T) using Taylor's formula yields

ngi-&,f+A)=J@,ﬂ-+<£h.g.ghn.VCJ>A

a7
Y a+0 (8D @.2.11)

In equation (A.2.11l), < , > represents the Euclidean inner
g? represents the gradient of J

with respect to C defined as the n-dimensional vector

7 &J QJ aJ )
\ acl' a,’ 7t )
n

Substituting from equations (A.2.9) and (A.2.11) in (A.2.8)

yields

JgC, 1) = Min  |g(r, C, u(m))-A+ 3, 7)
u(t) e G

T Ssts<sT 4+ A

, L ] ﬂ L] 2
+<E(T,Cou (1), VT Ak A+0(A)]
(A.2.12)

Since J(C,7) in the right hand side of equation (A.2.12)
is independent of u(t), it can be moved outside the minimiza-

tion operation. Hence
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Min [g(r, €, u(r)) &+ < £(r, G u(r), v >4
u(t) ¢ Q =
T Sts<sT+ A

oJ

+ dr

A+ O(Az)] =0

Dividing throughout by A and considering the limit when A - O

yields
%JF + Min [g(r, C, u(r)) + < £(r, ¢, u(r)), ch > ] =
u(r) € Q o2
(A.2.13)

Replacing 7 by t and ¢ by x in equation (A.2.13), it can

be rewritten as

Hv min gt x ult) + < £t x wle)), VT > =
== =t = = x
u(t) e Q (a.2.14)

The return.function thus has to satisfy equation (A.2.14).

Equation (A.2.14) is called the functional equation of dynamic

programming. Wwhen the minimization is performed and the zerm

within the sguare brackets replaced by its minimum value, the

resulting equation is called the Hamilton-Jacobi partial dif-

ferential equation.

Notice that by the definition of the return function

o)

o]
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(A.2.3), the boundary condition on (A.2.14) is
Jix, T) =0 (A.2.15)
To conform with the accepted terminology in optimal con-

trol literature, the functional equation of dynamic program-

ming will be written using the so-called Hamiltonian for the

minimization problem.
The scalar valued function H(t, x, u, A) called the Ham-

iltonian is defined as

H(tr X, 41, _l) = g(ta X, 2) + <;\_o _f_(to X, E_) >
(A.2.16)

where )\ is an arbitrary n-dimensional vector (X cees Xn)

1'
called the Lagrange multiplier vector.

From (A.2.14) and (A.2.16)

L4 + Min H(t, x, u, vJ) =0 (A.2.17)
At . 2 = X
B(t) € —

Denote the value of u ¢ { which instantaneously minimizes
the Hamiltonian, eq. (A.2.16) by u*. This minimization will

yield u* explicitly (at least in principle) in the form
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u* = u* (t, x, A (A.2.18)

Define

H*(t! X A_) = H(t, X, M, 2\_) I
lu = u* (£, %2

(A.2.19)
Thus H*(t, x, \) is the minimum value of the Hamiltonian with
respect to u ¢ {i. In terms of this minimum value of the Hamil-
tonian, equation (A.2.17) is equivalent to
aJ

——— * =
s¢ + E*(E, X, V9 =0 (A.2.20)

Equation (A.2.20) is the Hamilton-Jacobi partial different-
ial equation for the optimization problem.

Equation (A.2.20) when solved with the boundary condition
(A.2.15) will yield J(x, t) as a solution. Knowledge of J(x, t)
implies that the value of the performance index is deter-
mined for a process starting at any time with any initial
state,

From equations (A.2.16) and (A.2.17) it is evident that
on an wptimal trajectory, the Lagrange multiplier vector )

can be expressed in the form

« 1 ‘4
. A
tes -ae SEaE SEEE SSaE SRR SBEE BEER BEER EE BEE BB B OB B >
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i = VvV J (A.Z.Zl)

Substituting ‘rom (A.2.21) in (A.2.18) will result in u*
determined explicitly as a function of t, the current time
and x, the current state. This then will truly be a feedback
solution to the optimization prﬁblem.

Hencé, if the Hamilton-Jacobi equation can be explicitly
solved, the optimal feedback solution can be obtained.

Example

Consider a linear time invariant plant governed by
X=AX+Dbu (A.2.22)

where A is a n x n matrix and b is a n-vector. In equation
(A.2.22) u is a scalar, which implies that the plant has only
one input. Assume that u is unconstrained.

Let the plant be in an initial state

I
10

x(0) (A.2.23)
It is required to find a feedback solution, i.e., u as a
function of the current state and possibly current time so as

to minimize a performance index of the form
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I(u) = % j [ <X, Qx >+au2]. dat (A.2.24)
)

In equation (A.2.24), Q is assumed to be a constant pos-

itive semi-definite matrix and o is a positive constant.

From equation (A.2.16), the Hamiltonian for this problem

is

H(t, x, u.},)=%<X.Qx
1 o 2
25X Qx>+ <A AX>+Ju+ <), b>u

(A.2.25)

To find H* of (A.2.19), the value u* which minimizes H
has to be determined. Since u is unconstrained, this can be
simply done by equating to zero the partial derivative of H

with respect to u. This step yields, from equation (A.2.25)
au*+ <), b>=0

i.e.,

ur = - % <X, b> ‘ (A.2.26)

Hence, corresponding to (A.2.19)

X X >+ %'uz + <A AX+Dbu> '
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1 1 . 2
H*(tl_}sl_x_)=5<_§l Q§_>+<Ac A§>-5f¥ (<_1IP_>)
(A.2.27)

From the fact that the plant and the coefficients in the
integrand of the performance index are time-invariant and the
optimization is for an infinite duration process, it follows
from the definition of the return function, equation (A.2.3)
that J(x, t) will depend only on the initial state x. This

implies that

3.5 (A.2.28)

From (A.2.20), (A.2.27) and (A.2.28), the Hamilton-Jacobi

equation is

1 1
= < < - v 2.
> X, Qx>+ ?ff' A x> o (< xJ, b >) o)
- (A.2.29)
Assume a solution to (A.2.29) of the form
J=<x, PXx> (A.2.30)

where P is an unknown positive definite constant matrix. Then
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VJ=2PXx (A.2.31)

x

Substituting from (A.2.31) in (A.2.29)

1 1 2
2% Qx>+ 2<Px AX>-o {(2<Px,b>» =0
i.E.. »
1 T 2 T
<X 5Qx>+<X%X PAX>+<x APX>-><x P bb'Px

i.e.,

< X, (-%Q+PA+ATP-?22-PP_§_TP)_;5>=0

This implies that the matrix P should satisfy the algebraic

equation

20+ s ATe -2pppTr-0  -(a.2.32)

Equation (A.2.32) is equivalent to n(n + 1)/2 simultane-
ous equations involving the n(n + 1)/2 unknown elements of the
symmetric matrix P. The solution of equation (A.2.32) will de-

termine the matrix P and consequently the return function (A.2.30).

—_—
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Also VYJ of equation (A.2.31) will be determined. Fron equa-
tion (A.2.21) it is seen that ) will also be determined. Hence
the optimal feedback law, from equations (A.2.31), (A.2.26)

and (A.2.21) is

--%2<pp, x> (A.2.33)

From equation (A.2.33) it is seen that the optimal con-
troller is a linear time invariant feedback controller which
requires measurement of all the states of the plant.

For numerical evaluation consider specifically the
double 1i..tegration plant,

X, = x x.0) =C xz(o)

i
Q

e
"
=

5 X, (=) = x,(=) =0

and the performance index

I(u) = % f: (4xi + uz)dt
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'Using the generic symbols of the example, in this numeri-

cal example

SIS BERT S AR S P

Substituting these values in equation (A.2.32) results in

2

2 - 2py, P11 - 2P3oPy;
=0 (A.2.34)
Py ~ 2P),P;; 2Py, =~ 2Py,
Here
P11 P32
P =
P12 Py,
From (A.2.34)
= 1 '

= 1 and Py = 2

Hence, from equation (A.2.30)

2 2
t-— A.z. 5
J 2xl + 2x1x2 + x, ( 35)
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and from eguation (A.2.33), the control law is

u* = - 2x. - 2X (A.2.36)

A.3 Pontryagin's Maximum Principle

From ejuations (A.2.15) and (A.2.16) it is evident that
the optimal u, i.e., u*, is such that it minimizes the Ham-
iltonian. This is the statement of the Pontryagqin Maximum

Principle. 1In other words

H(t, x, u*, A) < H(t, x, u, A) (A.3.1)
for any u # uv.

A.4 The Euler Eguations - Unconstrained Control

A set of necessary conditions called the Euler Equations
will be derived next for the optimization problem of Section
A.l. 1In the following development it will be assumed that
the control vector u(t) is unconstrained. The deviation here
is different from the usual methods of the classical calculus
of variations. It leans heavily on the functional equation
of dynamic programming, viz., eguation (A.2.14).

Equation (A.2.14) is ejuivalent to the two equations
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v v =
g + fg O =0 (A.4.1)

which is the condition for the term within the square brackets

to be a minimum with respect to the vector u and

%gw glt, x, u) + < £(t, x, W, vJ >=0 (A.4.2)

valid for t, x and u related by (A.4.1). Note that (A.4.1)

is a vector equation. In equation (A.4.1) Vug is the m-dimen-,

sional vector with components

r2a 29 59 N
Ldu, " du, ' " du
1 2 m

and fu is the m x n matrix defined by

of of of

1 2 ... n
du aul aul
f = : A (A.4.3)
-u .

du  Adu au
m

Now consider

t R . .
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d . N}
3 (&J) (&J) x + % ot (A.4.4)
where
32 2% ... 22
2
axl bxl ax2 axl axn
v ;’\ . (A.4.5)
XX *
az e o o 0 * o 32
AX dx X 2
n 1 n

Taking the expression for the gradient on both sides of equ-

ation (A.4.2) w. r. t. X yields

dJ
Yy v =
V?Sat+V§g+(VﬁJ)_§+%(§J) 0 (A.4.6)
i.e.,
v 3 f+9 Ao _vg-f (v (A.4.7)
x ' T xoet x©  Tx ¥

Replacing %X by £ in equation (A.4.4) and then substitut-

ing in (A.4.7) yields
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Q(VJ)=-Vg-f, (v.J) (aA.4.8
dt § x x -o)

Define

.
F3
1>

From (A.4.8) and (A.4.9)

A== V}_g - _f_zc_ A (A.4.10)
and from (A.4.1) and (A.4.9)
VIt E 2=0 (A.4.11)

Equatiqns (A.1.1), (A.4.10) and (A.4.11) are the Euler
equations for the optimization problem. They represent a
set of 2n first order differential equations and m finite
equations involving 2n + m variables and hence can be solved
when 2n boundary conditions are specified.

The 2n + m EBuler equations can be combined and equival-
ently expressed as 2n first order differential equations in

the so-called Hamilton's canonic form. This form makes use

of the Hamiltonian defined in equation (A.2.16).
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From equation (A.2.16), it is seen that
v =V
HH !g + ’f‘_\z‘)“ (A.4.12)
va = £(t, x, u) (A.4.13)
v =V .
§H !9 4 ;E A (A.4.14)

Comparing equations (r.1.1), (A.4.10), and (A.4.11) with
equations (A.4.12) to (A.4.14), it is seen that the Euler

equations can be written in terms of the Hamiltonian in the

following form

X = v, H (A.4.15)
- A=V H (A.4.16)
= X
0 =9 H (A.4.17)
u

The solution of equation (A.4.17) is by definition
equation (A.2.18). Hence if u* is used instead of u in equa-
tions (A.4.15) and (A.4.16), equation (A.4.17) will automat-

ically be satisfied. However, using u* instead of u in the
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right hand sides of equations (A.4.15) and (A.4.16) is equiv-
alent to using H* of equation (A.2.19) instead of H. This

leads to the Hamilton canonic equations

X = V_ H* (A.4.18)
;= A =V _H* (A.4.19)

Equations (A.4.18) and (A.4.19) are necessary conditions
which have to be satisfied on an optimal trajectory. They
represent a set of 2n first order differential equations. To
obtain a solution to this set of equations, 2n boundary condi-
tions are necessary. These conditions may be determined
either from the transversality conditions to be discussed
later or they/may be specified beforehand by requiring that
the trajectories should originate and terminate at certain
points in the state space.

Finally

dH* (t, x, A) AH*

= .,V * -+ .,V
at at T <X Y HE > 4 <A

AH > (A.4.20)

Substituting from equations (A.4.18) and (A.4.19) in
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(A.4.20) yields

aH* (t, x, A) 3H* (t, x, A)

at = ac (A.4.21)

Eguation (A.4.21) shows that if H* does not depend
explicitly on t (i.e., H* = H*(x, A)), then on an optimal

trajectory, the "Hamiltonian" function is a constant, i.e.,
H*(x, )A) = constant (a.4.22)

Example

Consider the example of the linear, time-invariant
plant with gquadratic integrand in the performance index and
infinite process duration described by equations (A.2.22)
and (A.2.23). For this system, the minimum value of the
Hamiltonian is given by equation (A.2.27). From esquation
(A.2.27) and equations (A.4.18) and (A.4.19), the Hamil—

ton's canonic equations are

x = A (A.4.23)

1%

]
R I~
1o

o

I>

-.i =Q X+ A A (A.4.24)

Equations (A.4.23) and (A.4.24) represent a set of 2n
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simultaneous linear time-invariant first order differential

equations. These are to be solved with the given boundary

conditions:
x, (0) = C, x,(®) =0
L & 4
(A.4.25)

xz(o) = C2 xz(w) = 0

The solution yields the optimal trajectory x*(t). The

optimal control u*(t) is then determined using equation (A.2.26).

Now using the numerical values associated with the double
integration plant of the previous example, equations (A.4.23)

and (A.4.24) reduce to

Ke
i
»

He
{

I
>

(A.4.26)

. \ .
, « .
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Rewrite equations (A.4.26) compactly as
2=Bz2 (A.4.27)
where z = column (xl, Xoo Xl' 12) and the matrix B is
r- -~
o 1l o o)
o] o] o -1
B = (A.4.28)
-4 o) 0] o
o o -1 (o)
: J
The characteristic equation of the canonical system
det | B=-u1I | =0
vields
4
4 +4=0 (A.4.29)
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Hence the solution of the canonic eqpations is of the form

xl(t) =k, exp[(-1 + j)t] + k

1 2

k, exp[(1 + j)t] + k

3 4

etc.

exp((-1 - j)t] +

exp({(1 - j)t] (A.4.30)

Note that the canonic system is unstable (half of its

eigenvalues are in the right half plane). Hence the only way

to satisfy the terminal boundary conditions in (A.4.25) is

to make the constants associated with the response due to the

right half plane eigenvalues zero.

This implies in equation (A.4.30)

Then

Xy = k1 exp (ult) + k2 exp (uzt)

x, = k; M, exp (B,t) + k4, exp (B,t)

From the initial conditions in equation (A.4.25)

(A.4.31)

(A.4.32)

' v s
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(A.4.33)

Biky +omky =,

kl and k2 can now be explicitly determined.

From equation (A.2.26)

u*(t) = - xz(t)

and hence from equation (A.4.26)

X

u*(t) 2

2 2
= klul exp (ult) + k2“2 exp(uzt) (A.4.34)

Equation (A.4.34) yields explicitly the optimal open loop
control function. Thus, the optimum open loop solution of this
particular optimization problem has been determined.

Remark 1

In general the canonic equations represent only nec-
essary conditions for optimality. Hence the solution of the
canonic equations yield, in general, only a "candidate" for
the optimam control function. In this particular example it

can be shown that the solution is actually optimum. In general
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however, the solution has to satisfy a few other necessary
conditions.
Remark 2‘
In general, the solution of the canonic equations
yields the optimum open loop solution. The Hamilton-Jacobi
or the dynamic programming formulation of the optimum control
problem will yield the closed loop or "feedback law” solutions.
Remark 3
In the case of linear plants and quadratic performance
criteria, one half of the eigenvalues of the canonic equations
for the regulator problem will have negative real parts. Hence,
in the case of free terminal time, fixed terminal point prob-
lems, the so-called "transversality conditions" are satisfied
by making the optimum system asymptotically stable. In gen-
eral, however, the terminal conditions will represent a curve
or a surface in the solution space* - this surface is some-
times called the terminal manifold. (Such, for example, is
the case in missile interception problems, the rendezvous of
two space vehicles, etc). Hence one must show that the solu-

tion of the optimization problem reaches the terminal

*The solution space is the (n + 1) dimensional space
whose co-ordinates are the n state coordinates and time.

. .
v . .
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manifold, i.e., the optimal trajectory Xx*(t) is non-tangen-
tial to the terminal manifold in the solution space. This
condition of non-tangency is called the transversality
condition. Satisfaction of the transversality condition
guarantees that the optimal system will reach the target.
This transversality condition is discﬁssed in greater detail
in the next section.
Remark 4

The canonic equations have been derived in this
section using the assumption that the control function has
no constraints. However, it can be shown that the canonic
equations are necessary conditions even when there are con-
straints on the control function. Of course, when there
are constraints, the minimization of the Hamiltonian with
respect to the control vector would involve more than exam-
ining the set of equations obtained by setting the suitable
partial derivatives of the Hamiltonian equal to zero. The
minimum value may occur on the boundary of the allowable

region in which the control vector is constrained to lie.

A.> The Transversality Condition

Suppose now that the trajectory x(t) must terminate on a
Given manifold x = h(t). 1In this case, for the optimal curve,

the change in J(x, t), the return function, as the final point
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moves along the specified curve must be zero. This is equiv-

alent to saying that at the final point

k-1 S S -
at * < I B>=0 (A.5.1)

Combining this with equation (A.4.2) yields the condition

at the final point
g{t. x, u) + < £(t, x, u), VxJ > - < va"h >=0 (A.5.2)

which combined with equation (A.4.9) yields

g(t, x, u) - <h - f£(t,

I

, 1), A>=0 (A.5.3)
at the final point.
Equation (A.5.3) is usually written in the form

(g(t, x, w) + <), £(t, x, w) >] | a4t -<a(P), dx > =

t=T
(A.5.4)

where i is replaced by dx/dt. In equation (A.5.4) dx and dt
are differentials on the terminal manifold at the point of its
intersection with the optimal trajectory. Note that the other
terms in equation (A.5.4) are evaluated on the optimal trajec-
tory.

Equation (A.5.4) is the transversality condition. Note

that in equation (A.5.4) the x, u and A refer to their values

»
1 * i I
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corresponding to the optimal trajectory.
In terms of the Hamiltonian, equation (A.2.19), the

transversality condition equation (A.5.4) is equivalent to

H*(t, x, A) | dt - <A(T), dx > =0 (A.5.5)
lt—.=fr

It is again emphasized that in equation (A.5.5), dt and

dx are differentials on the terminal manifold.
In the case of a fixed time optimization problem with

terminal state free, equation (A.5.5) reguires that

A(T) = 0 (A.5.6)

In the case of a fixed time optimization problem with
the final state specified, ejuation (A.5.5) is automatically

satisfied since dx = 0 and dt = 0.

A.6 A Minimum Time Problem - Use of Maximum Principle

Consider a two-integration second order plant which is
to be brought to the equilibrium state (= the origin of the

state space) in minimum time. The plant equations are

X, = X, i X, = U ful =1
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The performance index is

Note that 3H/du = xz for any control u. Hence the 'Hamilton-
ian' attains its minimum value on the boundary of the admis-

sible controls, i.e.,

i
o

u* = - sgn xz = 0 x?

and

H*(x, L’ = A%, - xz sgn xz + 1

The canonical equations are

F{
I
|
[+]
Q
S
>
N
>
i
]
>

. N
. . '
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Since the terminal conditions are xl(T) - XZ(T) = 0 and

the transversality condition (A.5.5) vyields xz(T) = % 1,

one can now solve the canonical equations for the optimal

control function u*(t) = - sgn xz(t) for any initial state

[xl(O), x2(0)3. The result is of. the form shown in Fig. A.2.
Note that the control here is of the relay ("bang-bang*",

or "on-off") type. This result has been first obtained by

Bushaw [19].

u(t)

+|

FIGURE A.2

It is interesting to note the simplicity with which this

result is obtained from the maximum principle.

i

So far nothing has been said about the solutions of the
canonical equations or the validity of the Maximum Principle

(A.3.1), at corners. A continuity argument can be used to

Il ’ . 2
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show the validity of (A.3.1) even at corners of an optimal
trajectory. It can also be shown that the functions gf(t),

A*(t) and H*(t, x*(t)), A*(t)) are continuous functions of t.

The latter statement is equivalent to the Weierstrass-Erdmann

corner condition in the calculus of variationms.

A.7 The Solution of a Discrete-Time Optimization Problem

In this section, the application of Bellman's functional
equation to discrete-time (or sampled-data) systems will be
pointed out. This approach was first used by Kalman [20]
for solving optimization problems in linear sampled-data
systems, and Kalman's results are reviewed here.

Consider the optimal control problem in discrete time.
Differential equations are replaced by difference equations
and integrals by sums. It should be noted that any optimiza-
tion problem that is to be solved on a digital computer must
be discretized initially. Also, when the limit is taken, as
the sampling period goes to zero, the continuous optimization
problem should result. On this basis, the functional equa-
tion of Bellman represents a general approach to the actual
numerical solution of optimization problems. Starting with
Bellman's equation both discrete and as already discussed,
continuous time optimization problems may be considered in a

systematic manner.

N »
. v i
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For the discrete-time case, consider the performance index

to be

N-1

I= Zo g(x(i), u(i), i) (A.7.1)

Since in this case, choice of the initial and final control

~

signals u(0) and u(N - 1) doesn't affect x(0) and x(N - 1),

it is necessary to write the performance index for the N-stage

control process as

N-1
Io=7 9lx(i+ 1), u(i), i + 1) (a.7.2)
N l i - -

1=0

or

N
Iy = 1 g[x(), uli - 1, 1]

1=

one is cequired to find the control sequence u(0), u(l),

U(N - 1) that minimizes (A.7.2) under the constraints

I

x(k + 1) = &(k) x(k) + H(k) u(k)

%(0) (A.7.3)

]
{e}

. B
l
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X(N) = free

Problems similar to this were discussed in the previous-
sections. The problem with x(N) free and N fixed will be
considered as an example.

With x(0) fixed, the minimum value of (A.7.2) is a
function only of the initial state and the length of the
process. Therefore let

JN[§(O)] = min INL_-.E' i) (A.7.4)

u(0), u(l), ..., u(N-1)
The basic functional equation is obtained by the following
reasoning. Since each stage of the N stage process must be
optimum, assume one is faced with the selection of the first
control signal u(0O). Any choice of u(0) say u'(0), will

result in

Iy = 9(x(1), u'(0), 1) + I ,[x(1)] (A.7.5)

The second term on the right is present since the process
must be optimum for the remaining N - 1 stages. Since x(1) is
a function of u(0) (by (A.7.3)), the minimum value of the per-

formance index is obtained by minimizing (A.7.5) with respect
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to u'(0). Thus

IN(EO ] = min fox(1), wO), 1 + 3 x(1)1]

u (0) (A.7.6)

Equation (A.7.6) is the basic functional equation for the prob-
lem under consideration. Iterative solution of this equation
yields the required sequence u(0), u(1), ..., u(N - 1).

An example of this procedure is presented at this time.

Problem Statement

Given a linear time-invariant plant subject to a

piecewise constant input signal
2k + 1) = & x(k) + h u(k) (A.7.7)

u(k) = constant t, st< tk+l (A.7.8)

Determine the control law

u = u(x)

that minimizes the performance index

Iy(x(0), ) =§ x(1)' Q x(i) + au(i - 1)2 (A.7.9)
I=1
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Problem Solution

Define

JN[x(O)] = min INEE(O)' ul (A.7.10)
u

By using the principle of optimali:y, one knows that at the
beginning of the N-stage process. one must make an optimal de-

cision. Choosing any value of u(0) will result in

Il[x(O). u (o) ] (A.7.11)

Since the remaining N - 1 stages must constitute an optimal

policy, the performance index is

I (x(0), w = I [x(0), w(@) ]+ 3 [x(1)]  (A.7.12)

In order to minimize this function over the total N stages,

write

Tyle(@) ] = min (1) (x(0), W) + Iy ) (x(1)] (.7-23)

which is the same as (A.7.6). To start the solution,one requires

that when N = 1
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JIEE(O)] = min 11(5(0), u(0)) (A.7.14)
u (0)

The following procedure has been rigorously justified [20].
Consider the matrix Q to be symmetric and q 2 O. The optimal

return from an N stage process starting at x(0) may be writ-

ten as

I (X(0) ] = x' (0) P(N) x(0) (A.7.15)
where P(N) is symmetric. Using this in (A.7.13), one has
3 (%0 ] = min [x' (1) 0 x(1) + a 1(0% + x' (1) P(N-1) x(1)]

u(o) (A.7.16)

and from (A.7.7)
Jy(x(0) 71 = min [x'(0) & [Q + P(n - 1)] % x(0)
u(0)
+ 2h* [Q+ P(N - 1)) & x(0) u(o)

+ ' (Q+PIN=-17h+a)ui(@1 (a.7.17)

From (A.7.17), define
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st -1) £04+ PN 1) (A.7.18)

The value of u(0) that minimizes (A.7.17) is easily found

to be

u(0) = - };L 2 - 1) 280 . fv -1 x0 @a.7.19)

From (A.7.19), u(0) is then that value of control signal to
be used at the start of an N-stage process. For this reason

a subscript N will be included and (A.7.19) will be written

as

u (0) = £'(N - 1) x(0) (A.7.20)

Notice that (A.7.20) represents a linear combination of

the state variables.

The minimum value of (A.7.17) may be written as

I lx(0)] = x' (0) P(N) x(0)
=x'(0) [®+h £ (N-1)] S(N-1) [®+h £ (N - 1)] x(0)
+a x'(0) £(N - 1) £ (N - 1) x(0) (A.7.21)
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Thus from (A.7.21) one has a recurrence equation for P(N),
P(N) = [&+h £'(N-1)]" S(N - 1)[&+ h £(N - 1)]

+a £f(N - 1) £'(N - 1)
(A.7.22)
It is now possible to solve for the optimum control law in an
iterative manner as follows: Start with a one stage process

(i.e., N =1). From (A.7.16) and (A.7.22)

3,[x(0)] = min [x'(1) @ x(1) + & u?(0)]
u(0)
= min [x'(1){Q + P(0)] x(1) + « u2(0)] (A.7.23)
u(0)

Therefore let P(0) = 0 ,and from (A.7.18) S(0) = Q. Using

(A.7.19),

ul(O) = £'(0) x(0) (A.7.24)

In order to obtain u2(0) (i.e., the first signal for a two

stage process), use f'(0) obtained in (A.7.24) with (A.7.21)

in order to calculate P(l). when P(l) is calculated, use (A.6.18)

to determine S(l1). Equation (A.7.19) is then used to calculate

u2(0) and the calculations unfold in this manner. The optimum
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feedback coefficients are obtained as

£°(0), £'(1), £'(2), ..., £'°(N = 1) (A.7.25)

These coefficients are then used in reverse order. For

example, for a three stage process,

ul(O) = £'(0) x(2)
u2(0) = £'(1) x(1) (A.7.26)
u3(0) = £'(2) x(0)

Equation (A.7.26) has the following meaning. ul(O) is the
optimal first signal for a 1 stage process; uz(O) is the opti-

mal first signal for a 2 stage orocess and u3(0) is the optimal

first signal for a three stage process. Therefore the feed-

back coefficients for the three stage process are: at t = 0,
multiply the state of the plant by £'(2). at t = T, by £'(1)
and at t = 2T by £'(0). Notice that in general, the control
law is non-stationary for finite length control processes.

It has been shown in general that as the number of stages in
the process approaches infinity, the value of f' (<) approaches
a constant and a linear, time-invariant control law results.

In practice, the feedback coefficients generally converge rather

-
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rapidly and approximately optimal control of finite length pro-
cesses may be obtained by using constant feedback from the state
variables.

A.8. Conclusions

Modern optimal control theory marks a distinct departure
in philosophy as well as in method from classical control
techniques. First, the object is no longer merely to come
within a given set of specifications but rather to go further,
in fact to go all the way to an optimum solution. In order
to accomplish this feat a great deal of information must be
given about the plant and its desired performance. A second
difference is the need for an index of performance in the mod-
ern theory, which requires the designer to completely specify
desirable performance as a function. 1In truth it must be ad-
mitted that this is difficult or impossible to do with the
present state of knowledge. Further study in this area is
surely needed. Moreover this is not the type of study which
can be made by researchers unfamiliar with applications. A
vast backlog of engineering experience with a variety of per-
formance indices appears to be the only way out of this dilemma.

It should be noted that no attehpt has been made in this
appendix to discuss the problems associated with hard con-

straints. A detailed consideration of the problem of constrained

control is given in chapter 4 of this report.
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Appendix B

Method of Quasi-Linearization

Let a vector differential equation
x = £(x, t) to 2t 2 t, (B.1)

be given with the boundary conditions

where C and X are n-dimensional vectors. It is assumed that

equations (B.l) and (B.2) have a unique solution on [t,, tT].
Let X, (t) be an initial guess to the solution of equation

(B.1) on [te, tT]. The (kX + 1)-st approximation is then ob-

tained from the k-th via

Ry = £, B+ IEE. D)X - X) (B.3)

and §§+l satisfies equation (B.2), where J is the Jacobian
matrix whose ij-th element, afi/axj, is the partial derivative

.th . .
of the i component of f with respect to the Jth component
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of x.

The components of the initial approximation vector x, (t)
may be constants, suitably chosen functions of time, polynom-
ials in t, etc. The first approximation _)gl(t) is obtained as
the solution of

= £(Xo, £) + T(£(Xe. t)) (X, - Xo) (B.4)

= J(E(X0, t)) X, + £(X, t) - J(£(xo, t))X, (B.5)

satisfying equation (B.2)..

Let ¢1 (t) be the fundamental solution matrix of
¢ = J(E(xs, t)) @, @ (0) = identity matrix (B.6)

Let 21 (t) be the particular solution vector of

By = J(£(Xo, t)) p; + £(Xo, t) - T(£(Xe, t))Xe,
El(o) = 0 (B.7)

Then the solution of equation (B.5) is written as

X, (8) = & (t) Xk, + p,(t) (B.8)

' '
‘ ’ - - - - - ’ - - - -
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where k. is a constant vector determined by solving

1

<cle). (@ (e k +p(£)) >=b. i=1,2, ....n

The entire calculations are easily carried out on a digital
computer. The convergence of this scheme, which is quadratic

in nature, and many other problems are discussed in reference

[10, [22].
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Method of Differential Approximation

An interesting problem which has many practical applica-
tions is the following: Given a vector valued function ¢(t)
of dimension n defined in the interval O < t < T, is it pos=-

sible to find an n-dimensional vector differential equation

of the form

k= £(t, x) (c.1)

such that the solution of this differential equation with

initial conditions

x(0) = @(0) (C.2)

is identical with p(t) over the interval O < t s T1

The solution to thisvproblem is rather difficult to find
in general. However, a slightly reformulated version of this
problem is rather easy to solve and quite adequate in practice.
The reformulated problem is posed as follows: Again, given

the function g(t) defined above and the differential equation.

i{. = H(t, 5, _12) (C.3)
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where the form of the function g is known except for a finite
set of parameters b, determine b such that tne solution of
(C.3) with initial conditions (C.2) is “"closest" to @(t), over

the interval O < t < T the term closest being suitably defined.

Note that if a set b = b, existed such that
s

e(t) = g(t, o, b) OstsT (C.4)

then, this is the set which will make the solution of the dif-
erential equation (C.3) with initial condition (C.2) identical
with ¢(t). However, in general such a set of parameters will

not exist.

A reasonable compromise is to seek for a set b = 92 such

that a suitable function

o(t) - glt, @, b)) | (C.5)

is close to zero in an acceptable sense. For example 22 may
be obtained as the solution of
T 2
Min J' l@(t) - g(t, @, b) ||° at (C.6)
b o

or
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Min sup lHe(e) - g(t, @, b)) |l (c.7)

b ostscT
In (C.6) and (C.7) ||+]| is the Euclidean norm.

The minimization problem implied by (C.6) is often easily
solved by equating to zero the partial derivatives of the in-
tegral with respect to the components of b, this yielding a
sufficient set of simultaneous equations involving the com-
ponents of g; subsequently solving these simultaneous equations.

The minimization problem implied by (C.7) is much more
difficult to solve.

The technique by which a set of parameters in a differ-
ential equation are selected so as to match its trajectory
with a given function of time is called differential approx-

imation [23].
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APPENDIX D
The technique presented here of applying invariant imbed-
ding to boundary value problems is essentially that of refer-

ence [29]. Consider the TPBVP described by the differential

equations

x = f(t, x, y)
Y =g(t, x, y) (D.1)
with boundary conditions
yv(0) = a y(T) = b (D.2)

Let r(C, T) denote the missing terminal condition on x for
a process starting at time O and ending at time T and also sat-

isfying y(0) = a, y(T) C, i.e.,

x(T)

]

r{(c, T) (D.3)
In equation (D.3) C and T are regarded as independent va-

riables. From equatior (D.l) then

X(C+ A&, T+ AT) = x(C, T) + £(T, r, C)AT + 0(A%)  (D.4)

. 2
where lim ogg 2 - o.
A0 A
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Expanding the left hand side of equation (D.4) using Tay-

lor's formula yields

r(C+ AC, T+ AT =r(C, T) +AC:—2+ M%+O(A2)
(D.5)
From equation (D.1l)
A = g(T, T, VAT + O(&)) (D.6)

Equating the right hand sides of equations. (D.4) and (D,5)

and passing to the limit as Ar-0 yields

dr dr
3 * g(r, r, C) 3 = £(T, r, C) (D.7)

Equation (D.7) is a partial differential equation which
with the proper boundary conditions on r governs the depend-
ence of the missing terminal conditions on x as a function

of the duration of the process and the terminal conditions on Y.
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APPENDIX E
Rewriting equation (5.6.3)
dr dr QJH* OH *
3T ~ ¢ or (T, r, Cc) = 3 (T, r, C) (E.1)

substituting into equation (E.1) using equation (5.5.3) yields

3 3 |
3% - 3% [Cgr(T, r) - 2hr(T, r) {y- h(T, r)}

2
AL - (E.2)
2 wz(T, r) - 2w(T, r)
where gr = %% .

Try an approximate solution for r(C, T) of the form
r(C, T) = P(T)C + %(T) (E.3)

Substituting equation (E.3) into equation (E.2) and ex-

panding the result about r(0, T) gives to first order

ap dx “ -
ar C* gpt P(D [-C {gg(T, %) + 955 (T, X)PC}

+ 2hg (T, X) {y - h(T, %)} +




251

2 a

+ 2 L1 {hi('.l‘. %) (y - h(T, %)) }eC --;12-

Aax wz('r. x)
L8 g o Sl jec]
2 % 21 % (E.4)
) ) . c __c2 (L1
= g(T, X) + gi(T. X)PC - wiT, %) 2 ox { w(T, X) Jec

Collecting terms of order Cc°, and those of order Cl, c .,

and C3 yields

Gk _ g(r, % - 2P(Dh (T, ¥ (y - h(T, )

daT
dp d -
c g5 = 2CPg; - 2P 3= {he (y = h(T. %)) JpcC
¢ + (terms of order C2 and C3)

-
2w (T, X)
(E.5)

I1f equation (E.5) is satisfied then so is equation (E.4). Di-
viding the P equation in (E.5) by C, substituting -P for P,
and noting that only those solutions for which C = O are of

interest, then the sequential estimator equations become

ax

5p = 9(T, %) + 22(T) he(T, %) {y - n(t, %}

.
Al * ’
e T I B BB O e e '
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dp - - ~ a ~ -~
—-d'I‘ = .«.Pgi(T. X) + 2P _35: [h;{(T, x) {y - h(T, %) ]]P

1 (E.6)
+ 2w(T, %)
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APPENDIX F

For the vector case consider the class of systems defined by

X =qg(t, x) + k(t, x) u

(F.1)
y(t) = h(t, x) + (observation error)
where x is an n-~vector
g(t, X) is an n-vector function
k(t, x) is an n x » vector function
u is a p-vector unknown input
h(t, x) is an m-vector
y is an m-vector output
Define the vector residual errors as
el(t) =y - h(t, %) (F.2)
e,(t) = % - g(t, %) (F.3)

The least estimate of x(t) O s t £ T is given by
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: T
M1 2
7:(2) 0stsT jo [“ex(t)HQ + Hea(t)llz ] at  (F.4)

2
Q

Denote by X(t) 0 s t £ T the function which minimizes the

where ||*||- and ||-||; are suitably defined quasi-norms.

expression (F.4). The least squares estimate of x(T) is
then x(T).

Using equation (F.l) for motivation and substituting
from equations (F.2) and (F.3) into the expression (F.4),
then minimizing the expression (F.4) with respect to
x(t) 0 £t €T is equivalent to minimizing

T - 2 - 2
[ [y -mee R01g 1S g Joe e

with respect to‘;(t) and ;(t) 0 <t ST subject to the
differential constraint

X = g(t, x) + k(T, x )u (F.6)
Let

V(t, %) = k'(t, x) W(t, x) k(t, x) (F.7)

and define the "pre-Hamiltonian" H(t, X, A, G) by

]
~
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Hee %o @) = (ly = nte, 012+ 115])2

+ (A, g(t, x) + k(t, x)u) (F.8)

where (-, :) denotes the Euclidian inner product. Setting

HG = = 0 (F-g)

solving for u(t, x, A) assuming V is not singular, and sub-

stituting u back into H leads to the Hamiltonian H*(t, x*, ).

‘

The variable x* replaces x to indicate that x* is the tra-
jectory along which the maximum principle is satisfied. The

Hamiltonian is then

H*(t, x*, A) = ||y - h(t, x*)llé + (0 glt, x*))

- % (o k V- k) (F.10)

[

The Euler-Lagrange equations are then

Gl (BN N G N G N D BN N D GBE M M GBS ame NN MW A
r
L
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. aH *
X

®* = *
ax (t, x*, A)
(F.11)
. AH*
— *
A A (B X*.A)
since T has been fixed, and x*{0) and x*{T) are free, the
transversality conditions yield
A(0) =0 X(T) =0 (F.12)

In order to solve the sequential estimation problem it
is necessary to solve the TPBVP given by equations (F.ll)
with boundary conditions (F.12) for all T, where now the
variable T is regarded as an independent variable.

Imbedding these TPBVP's in a larger class of TPBVP's

with boundary conditions

A(0) =0 A(T) =C (F.13)

and letting the missing terminal condition on x be r(c, T),

then r(C, T) satisfies the invariant imbedding equation

dr _ 3r oHY -
3T ~ ac ar (T T Q) =7 (T, r. ©) (F.14)

where %g = [ ;g? ]

.
‘ '
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Consider an approximate solution of the non-linear
partial differential equation (F.14) of the form
r(C, T) = P(T)C + x(T) (F.15)

where P(T) is an n X n matrix
C and X are n-vectors

Substituting equation (F.15) into equation (F.14) gives

~

dap dx - JH* 2 ) =
at C + 37 P(T) P (T, PC + x, C) = v (T, PC+x,C)

(F.l6)
Now expand equation (F.16) about r(0, T) retaining
terms to first order. The motivation for this approach 1is
that only those solutions of equation (F.14) for which C = 0
are of interest. Also, the least squares estimate of x(T),
now denoted by X(T) to emphasize the sequential nature of

the problem, is r(0, T). The result is

dp ax [_3H* .
gt C *gp - P(D ar (T % C) + (F.17)
N . dH* : o
aga— (T, x, C) PC] = aC (T, x, )
% y* N

+ (T, x, C) PC

dracC
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where

—3 (T, x, C)

(F.18)

-Lall: (T, ;(' C) {__—_———-

At this point it will be convenient to write the equa-

tions in component form. The summation convention will be

is implied. FPor example

“)

= U
N (F.19)

a..b .C \ a..b .C
iijmim & ij mim
Also Gij or (G)ij will mean the (i,3j)-th element of the matrix
G while cj will denote the j-th component of the vector C.
Writing equation (F.l17) in component form gives

ar, . ax.
1

1
at S5 Fat " Pij L er,

+
VA

e o]

(F.20)

used, i.e. if an index is repeated in a term then summation l
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the various partials of H* as given by equation (F.10)

a)

b)

c)

d)

OH* - ] ‘1
e, (Toro ol = -2[nd aty n) ]
) |r=i J
1 R- -1y,
* 9 ST 1Sy aij (k V%) C
ATy R 3 JH*
dr (T, x, C)}.l - ar! dr ., ) }
) ) r=x
_ - _
= - 255 [ npow n) |
1 J
L . ..].'. 53 . -]l
Yk, Oy e T4 Sk ex, VTR
OH* . _ .1 1,
acj (T, x, C) =g.(t, x) > (k v-! % )iL '
33+ R 3 JH*
arec (T: X. C)}ij %, ( ac,
1 2 -
= N - o T ‘)., C
(9g)i5 ~ 2 %, (k V75 k'), €
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It is now necessary to digress in order to determine

(F.21)

(F.22)

(F.23)

(F.24)
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Substituting equations (F.21, .22, .23, .24) into equa-

tion (F.20) gives

dPi. dxi '
ar S5 T ar T Fij { -2[ng oty - h)]4 + (98 45
o
(F.25)
1 3 -1 1, oy ' ~h) |
-2 %, e V25 k') 0 Gt {zail [’&Q‘Yhhj
._.a_. ..!: .——.§:—_— -3 [
* ail (gi)jm m~ 4 Cn ai,aij (k V7 Xk )nmcm} (PC)£}
_. hy - .l -1 [ L
= gi(t, x) 5 (k Vv k )i-t. C{+ (gx)ij (PC)j
- -1 1
2 aij (k V77 k )iL <, (Pc)j

Collecting terms of order Co and those of order C! and
higher yields the following:

(o]
Terms of order C

@@ - Py 2mg o - h)]j} =g, (t, %) (F. 26)

& <
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Rewriting equation (F.26)
dil . 1
I = 9t ) - 2Pij[hi a(y-h) ] (F.27)

Terms of order C! and higher

ap.
id -] '
ar  S: - Pij{‘gi)Lj C, -2 %%, [ Q(Y'h)]j(Pc)z}

(F.28)
= -4 (x v? k?) C, + (g.) (PC)
=2 it T 9204, )
+ (terms of order C* and C%)
Rewriting equation (F.28)
dp,
A =P, (g.),.C. 4+ (g.).. P C
4aT 1 i3 77°x"4) 1 Xx"i4 "4m m
(F.29)

_L -1 '
2 (VT kD, €,

3

- P..—:—-[h: -h.,P C
2 1j axm x Qly )J. m< 1

+ (terms of order C*® and ¢?)
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If equations (F.27) and (F.29) are satisfied then so is
equation (F.25). The solution of equations (F.25) of inter-
est are those for which C = 0. Hence the estimator equa-

tions become

ax; : 1
a - 9;(T. x) - zpij[hi Q(y-h)Jj
(F.30)
ap. .
ar - Pial9%) 50 (98054 Buy

_].'. -1 '
-3 (k v k )ij

- 2%, it ax [h“ Q(y-h)]

Substituting _Pij for Pij then in vector, matrix nota-

tion equations (F.30) become

ax

ar g(T, X) + 2P(T) H(t, x) Q{y - h(t, %)}

(F.31)

94 (T. X)P + Pgi(T, %) + ZP[H a{y - h(t, ®}] P
X

N -21- k(T, %) V' (T, %) k'(T, %)

) ) ’ - - - ' - - - -
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where

dh,
Hee ) = {57 )
J

r

X

-1 - 2y 11
Column aii [HQ {vy - h(t, X)}J
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(B Q {y - n(t, f()}} is an n X n matrix with ith



